ardupilot/ArduSub/mode_guided.cpp

882 lines
32 KiB
C++

#include "Sub.h"
/*
* Init and run calls for guided flight mode
*/
#define GUIDED_POSVEL_TIMEOUT_MS 3000 // guided mode's position-velocity controller times out after 3seconds with no new updates
#define GUIDED_ATTITUDE_TIMEOUT_MS 1000 // guided mode's attitude controller times out after 1 second with no new updates
static Vector3p posvel_pos_target_cm;
static Vector3f posvel_vel_target_cms;
static uint32_t update_time_ms;
struct {
uint32_t update_time_ms;
float roll_cd;
float pitch_cd;
float yaw_cd;
float climb_rate_cms;
} static guided_angle_state = {0,0.0f, 0.0f, 0.0f, 0.0f};
struct Guided_Limit {
uint32_t timeout_ms; // timeout (in seconds) from the time that guided is invoked
float alt_min_cm; // lower altitude limit in cm above home (0 = no limit)
float alt_max_cm; // upper altitude limit in cm above home (0 = no limit)
float horiz_max_cm; // horizontal position limit in cm from where guided mode was initiated (0 = no limit)
uint32_t start_time;// system time in milliseconds that control was handed to the external computer
Vector3f start_pos; // start position as a distance from home in cm. used for checking horiz_max limit
} guided_limit;
// guided_init - initialise guided controller
bool ModeGuided::init(bool ignore_checks)
{
if (!sub.position_ok() && !ignore_checks) {
return false;
}
// start in position control mode
guided_pos_control_start();
return true;
}
// get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter
// set rtl parameter to true if this is during an RTL
autopilot_yaw_mode ModeGuided::get_default_auto_yaw_mode(bool rtl) const
{
switch (g.wp_yaw_behavior) {
case WP_YAW_BEHAVIOR_NONE:
return AUTO_YAW_HOLD;
break;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL:
if (rtl) {
return AUTO_YAW_HOLD;
} else {
return AUTO_YAW_LOOK_AT_NEXT_WP;
}
break;
case WP_YAW_BEHAVIOR_LOOK_AHEAD:
return AUTO_YAW_LOOK_AHEAD;
break;
case WP_YAW_BEHAVIOR_CORRECT_XTRACK:
return AUTO_YAW_CORRECT_XTRACK;
break;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP:
default:
return AUTO_YAW_LOOK_AT_NEXT_WP;
break;
}
}
// initialise guided mode's position controller
void ModeGuided::guided_pos_control_start()
{
// set to position control mode
sub.guided_mode = Guided_WP;
// initialise waypoint controller
sub.wp_nav.wp_and_spline_init();
// initialise wpnav to stopping point at current altitude
// To-Do: set to current location if disarmed?
// To-Do: set to stopping point altitude?
Vector3f stopping_point;
sub.wp_nav.get_wp_stopping_point(stopping_point);
// no need to check return status because terrain data is not used
sub.wp_nav.set_wp_destination(stopping_point, false);
// initialise yaw
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
}
// initialise guided mode's velocity controller
void ModeGuided::guided_vel_control_start()
{
// set guided_mode to velocity controller
sub.guided_mode = Guided_Velocity;
// initialize vertical maximum speeds and acceleration
position_control->set_max_speed_accel_z(-sub.get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
position_control->set_correction_speed_accel_z(-sub.get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
// initialise velocity controller
position_control->init_z_controller();
position_control->init_xy_controller();
// pilot always controls yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// initialise guided mode's posvel controller
void ModeGuided::guided_posvel_control_start()
{
// set guided_mode to velocity controller
sub.guided_mode = Guided_PosVel;
// set vertical speed and acceleration
position_control->set_max_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z());
position_control->set_correction_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z());
// initialise velocity controller
position_control->init_z_controller();
position_control->init_xy_controller();
// pilot always controls yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// initialise guided mode's angle controller
void ModeGuided::guided_angle_control_start()
{
// set guided_mode to velocity controller
sub.guided_mode = Guided_Angle;
// set vertical speed and acceleration
position_control->set_max_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z());
position_control->set_correction_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z());
// initialise velocity controller
position_control->init_z_controller();
// initialise targets
guided_angle_state.update_time_ms = AP_HAL::millis();
guided_angle_state.roll_cd = ahrs.roll_sensor;
guided_angle_state.pitch_cd = ahrs.pitch_sensor;
guided_angle_state.yaw_cd = ahrs.yaw_sensor;
guided_angle_state.climb_rate_cms = 0.0f;
// pilot always controls yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// guided_set_destination - sets guided mode's target destination
// Returns true if the fence is enabled and guided waypoint is within the fence
// else return false if the waypoint is outside the fence
bool ModeGuided::guided_set_destination(const Vector3f& destination)
{
// ensure we are in position control mode
if (sub.guided_mode != Guided_WP) {
guided_pos_control_start();
}
#if AP_FENCE_ENABLED
// reject destination if outside the fence
const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN);
if (!sub.fence.check_destination_within_fence(dest_loc)) {
LOGGER_WRITE_ERROR(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// no need to check return status because terrain data is not used
sub.wp_nav.set_wp_destination(destination, false);
#if HAL_LOGGING_ENABLED
// log target
sub.Log_Write_GuidedTarget(sub.guided_mode, destination, Vector3f());
#endif
return true;
}
// sets guided mode's target from a Location object
// returns false if destination could not be set (probably caused by missing terrain data)
// or if the fence is enabled and guided waypoint is outside the fence
bool ModeGuided::guided_set_destination(const Location& dest_loc)
{
// ensure we are in position control mode
if (sub.guided_mode != Guided_WP) {
guided_pos_control_start();
}
#if AP_FENCE_ENABLED
// reject destination outside the fence.
// Note: there is a danger that a target specified as a terrain altitude might not be checked if the conversion to alt-above-home fails
if (!sub.fence.check_destination_within_fence(dest_loc)) {
LOGGER_WRITE_ERROR(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
if (!sub.wp_nav.set_wp_destination_loc(dest_loc)) {
// failure to set destination can only be because of missing terrain data
LOGGER_WRITE_ERROR(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION);
// failure is propagated to GCS with NAK
return false;
}
#if HAL_LOGGING_ENABLED
// log target
sub.Log_Write_GuidedTarget(sub.guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt),Vector3f());
#endif
return true;
}
// guided_set_destination - sets guided mode's target destination and target heading
// Returns true if the fence is enabled and guided waypoint is within the fence
// else return false if the waypoint is outside the fence
bool ModeGuided::guided_set_destination(const Vector3f& destination, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
// ensure we are in position control mode
if (sub.guided_mode != Guided_WP) {
guided_pos_control_start();
}
#if AP_FENCE_ENABLED
// reject destination if outside the fence
const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN);
if (!sub.fence.check_destination_within_fence(dest_loc)) {
LOGGER_WRITE_ERROR(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// set yaw state
guided_set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
update_time_ms = AP_HAL::millis();
// no need to check return status because terrain data is not used
sub.wp_nav.set_wp_destination(destination, false);
#if HAL_LOGGING_ENABLED
// log target
sub.Log_Write_GuidedTarget(sub.guided_mode, destination, Vector3f());
#endif
return true;
}
// guided_set_velocity - sets guided mode's target velocity
void ModeGuided::guided_set_velocity(const Vector3f& velocity)
{
// check we are in velocity control mode
if (sub.guided_mode != Guided_Velocity) {
guided_vel_control_start();
}
update_time_ms = AP_HAL::millis();
// set position controller velocity target
position_control->set_vel_desired_cms(velocity);
}
// guided_set_velocity - sets guided mode's target velocity
void ModeGuided::guided_set_velocity(const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
// check we are in velocity control mode
if (sub.guided_mode != Guided_Velocity) {
guided_vel_control_start();
}
// set yaw state
guided_set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
update_time_ms = AP_HAL::millis();
// set position controller velocity target
position_control->set_vel_desired_cms(velocity);
}
// set guided mode posvel target
bool ModeGuided::guided_set_destination_posvel(const Vector3f& destination, const Vector3f& velocity)
{
// check we are in velocity control mode
if (sub.guided_mode != Guided_PosVel) {
guided_posvel_control_start();
}
#if AP_FENCE_ENABLED
// reject destination if outside the fence
const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN);
if (!sub.fence.check_destination_within_fence(dest_loc)) {
LOGGER_WRITE_ERROR(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
update_time_ms = AP_HAL::millis();
posvel_pos_target_cm = destination.topostype();
posvel_vel_target_cms = velocity;
position_control->input_pos_vel_accel_xy(posvel_pos_target_cm.xy(), posvel_vel_target_cms.xy(), Vector2f());
float dz = posvel_pos_target_cm.z;
position_control->input_pos_vel_accel_z(dz, posvel_vel_target_cms.z, 0);
posvel_pos_target_cm.z = dz;
#if HAL_LOGGING_ENABLED
// log target
sub.Log_Write_GuidedTarget(sub.guided_mode, destination, velocity);
#endif
return true;
}
// set guided mode posvel target
bool ModeGuided::guided_set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
// check we are in velocity control mode
if (sub.guided_mode != Guided_PosVel) {
guided_posvel_control_start();
}
#if AP_FENCE_ENABLED
// reject destination if outside the fence
const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN);
if (!sub.fence.check_destination_within_fence(dest_loc)) {
LOGGER_WRITE_ERROR(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// set yaw state
guided_set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
update_time_ms = AP_HAL::millis();
posvel_pos_target_cm = destination.topostype();
posvel_vel_target_cms = velocity;
position_control->input_pos_vel_accel_xy(posvel_pos_target_cm.xy(), posvel_vel_target_cms.xy(), Vector2f());
float dz = posvel_pos_target_cm.z;
position_control->input_pos_vel_accel_z(dz, posvel_vel_target_cms.z, 0);
posvel_pos_target_cm.z = dz;
#if HAL_LOGGING_ENABLED
// log target
sub.Log_Write_GuidedTarget(sub.guided_mode, destination, velocity);
#endif
return true;
}
// set guided mode angle target
void ModeGuided::guided_set_angle(const Quaternion &q, float climb_rate_cms)
{
// check we are in velocity control mode
if (sub.guided_mode != Guided_Angle) {
guided_angle_control_start();
}
// convert quaternion to euler angles
q.to_euler(guided_angle_state.roll_cd, guided_angle_state.pitch_cd, guided_angle_state.yaw_cd);
guided_angle_state.roll_cd = ToDeg(guided_angle_state.roll_cd) * 100.0f;
guided_angle_state.pitch_cd = ToDeg(guided_angle_state.pitch_cd) * 100.0f;
guided_angle_state.yaw_cd = wrap_180_cd(ToDeg(guided_angle_state.yaw_cd) * 100.0f);
guided_angle_state.climb_rate_cms = climb_rate_cms;
guided_angle_state.update_time_ms = AP_HAL::millis();
}
// helper function to set yaw state and targets
void ModeGuided::guided_set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle)
{
float current_yaw = wrap_2PI(AP::ahrs().get_yaw());
float euler_yaw_angle;
float yaw_error;
euler_yaw_angle = wrap_2PI((yaw_cd * 0.01f));
yaw_error = wrap_PI(euler_yaw_angle - current_yaw);
int direction = 0;
if (yaw_error < 0){
direction = -1;
} else {
direction = 1;
}
/*
case 1: target yaw only
case 2: target yaw and yaw rate
case 3: target yaw rate only
case 4: hold current yaw
*/
if (use_yaw && !use_yaw_rate) {
sub.yaw_rate_only = false;
sub.mode_auto.set_auto_yaw_look_at_heading(yaw_cd * 0.01f, 0.0f, direction, relative_angle);
} else if (use_yaw && use_yaw_rate) {
sub.yaw_rate_only = false;
sub.mode_auto.set_auto_yaw_look_at_heading(yaw_cd * 0.01f, yaw_rate_cds * 0.01f, direction, relative_angle);
} else if (!use_yaw && use_yaw_rate) {
sub.yaw_rate_only = true;
sub.mode_auto.set_yaw_rate(yaw_rate_cds * 0.01f);
} else{
sub.yaw_rate_only = false;
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// guided_run - runs the guided controller
// should be called at 100hz or more
void ModeGuided::run()
{
// call the correct auto controller
switch (sub.guided_mode) {
case Guided_WP:
// run position controller
guided_pos_control_run();
break;
case Guided_Velocity:
// run velocity controller
guided_vel_control_run();
break;
case Guided_PosVel:
// run position-velocity controller
guided_posvel_control_run();
break;
case Guided_Angle:
// run angle controller
guided_angle_control_run();
break;
}
}
// guided_pos_control_run - runs the guided position controller
// called from guided_run
void ModeGuided::guided_pos_control_run()
{
// if motors not enabled set throttle to zero and exit immediately
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out(0,true,g.throttle_filt);
attitude_control->relax_attitude_controllers();
sub.wp_nav.wp_and_spline_init();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!sub.failsafe.pilot_input) {
// get pilot's desired yaw rate
target_yaw_rate = sub.get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
} else{
if (sub.yaw_rate_only){
set_auto_yaw_mode(AUTO_YAW_RATE);
} else{
set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING);
}
}
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run waypoint controller
sub.failsafe_terrain_set_status(sub.wp_nav.update_wpnav());
float lateral_out, forward_out;
sub.translate_wpnav_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
// WP_Nav has set the vertical position control targets
// run the vertical position controller and set output throttle
position_control->update_z_controller();
// call attitude controller
if (sub.auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch & yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate);
} else if (sub.auto_yaw_mode == AUTO_YAW_LOOK_AT_HEADING) {
// roll, pitch from pilot, yaw & yaw_rate from auto_control
target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0;
attitude_control->input_euler_angle_roll_pitch_slew_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), target_yaw_rate);
} else if (sub.auto_yaw_mode == AUTO_YAW_RATE) {
// roll, pitch from pilot, yaw_rate from auto_control
target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate);
} else {
// roll, pitch from pilot, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), true);
}
}
// guided_vel_control_run - runs the guided velocity controller
// called from guided_run
void ModeGuided::guided_vel_control_run()
{
// ifmotors not enabled set throttle to zero and exit immediately
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out(0,true,g.throttle_filt);
attitude_control->relax_attitude_controllers();
// initialise velocity controller
position_control->init_z_controller();
position_control->init_xy_controller();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!sub.failsafe.pilot_input) {
// get pilot's desired yaw rate
target_yaw_rate = sub.get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
} else{
if (sub.yaw_rate_only){
set_auto_yaw_mode(AUTO_YAW_RATE);
} else{
set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING);
}
}
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set velocity to zero if no updates received for 3 seconds
uint32_t tnow = AP_HAL::millis();
if (tnow - update_time_ms > GUIDED_POSVEL_TIMEOUT_MS && !position_control->get_vel_desired_cms().is_zero()) {
position_control->set_vel_desired_cms(Vector3f(0,0,0));
}
position_control->stop_pos_xy_stabilisation();
// call velocity controller which includes z axis controller
position_control->update_xy_controller();
position_control->set_pos_target_z_from_climb_rate_cm(position_control->get_vel_desired_cms().z);
position_control->update_z_controller();
float lateral_out, forward_out;
sub.translate_pos_control_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
// call attitude controller
if (sub.auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch & yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate);
} else if (sub.auto_yaw_mode == AUTO_YAW_LOOK_AT_HEADING) {
// roll, pitch from pilot, yaw & yaw_rate from auto_control
target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0;
attitude_control->input_euler_angle_roll_pitch_slew_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), target_yaw_rate);
} else if (sub.auto_yaw_mode == AUTO_YAW_RATE) {
// roll, pitch from pilot, yaw_rate from auto_control
target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate);
} else {
// roll, pitch from pilot, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), true);
}
}
// guided_posvel_control_run - runs the guided posvel controller
// called from guided_run
void ModeGuided::guided_posvel_control_run()
{
// if motors not enabled set throttle to zero and exit immediately
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out(0,true,g.throttle_filt);
attitude_control->relax_attitude_controllers();
// initialise velocity controller
position_control->init_z_controller();
position_control->init_xy_controller();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!sub.failsafe.pilot_input) {
// get pilot's desired yaw rate
target_yaw_rate = sub.get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
} else{
if (sub.yaw_rate_only){
set_auto_yaw_mode(AUTO_YAW_RATE);
} else{
set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING);
}
}
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set velocity to zero if no updates received for 3 seconds
uint32_t tnow = AP_HAL::millis();
if (tnow - update_time_ms > GUIDED_POSVEL_TIMEOUT_MS && !posvel_vel_target_cms.is_zero()) {
posvel_vel_target_cms.zero();
}
// advance position target using velocity target
posvel_pos_target_cm += (posvel_vel_target_cms * position_control->get_dt()).topostype();
// send position and velocity targets to position controller
position_control->input_pos_vel_accel_xy(posvel_pos_target_cm.xy(), posvel_vel_target_cms.xy(), Vector2f());
float pz = posvel_pos_target_cm.z;
position_control->input_pos_vel_accel_z(pz, posvel_vel_target_cms.z, 0);
posvel_pos_target_cm.z = pz;
// run position controller
position_control->update_xy_controller();
position_control->update_z_controller();
float lateral_out, forward_out;
sub.translate_pos_control_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
// call attitude controller
if (sub.auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch & yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate);
} else if (sub.auto_yaw_mode == AUTO_YAW_LOOK_AT_HEADING) {
// roll, pitch from pilot, yaw & yaw_rate from auto_control
target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0;
attitude_control->input_euler_angle_roll_pitch_slew_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), target_yaw_rate);
} else if (sub.auto_yaw_mode == AUTO_YAW_RATE) {
// roll, pitch from pilot, and yaw_rate from auto_control
target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate);
} else {
// roll, pitch from pilot, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), true);
}
}
// guided_angle_control_run - runs the guided angle controller
// called from guided_run
void ModeGuided::guided_angle_control_run()
{
// if motors not enabled set throttle to zero and exit immediately
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out(0.0f,true,g.throttle_filt);
attitude_control->relax_attitude_controllers();
// initialise velocity controller
position_control->init_z_controller();
return;
}
// constrain desired lean angles
float roll_in = guided_angle_state.roll_cd;
float pitch_in = guided_angle_state.pitch_cd;
float total_in = norm(roll_in, pitch_in);
float angle_max = MIN(attitude_control->get_althold_lean_angle_max_cd(), sub.aparm.angle_max);
if (total_in > angle_max) {
float ratio = angle_max / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// wrap yaw request
float yaw_in = wrap_180_cd(guided_angle_state.yaw_cd);
// constrain climb rate
float climb_rate_cms = constrain_float(guided_angle_state.climb_rate_cms, -sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up());
// check for timeout - set lean angles and climb rate to zero if no updates received for 3 seconds
uint32_t tnow = AP_HAL::millis();
if (tnow - guided_angle_state.update_time_ms > GUIDED_ATTITUDE_TIMEOUT_MS) {
roll_in = 0.0f;
pitch_in = 0.0f;
climb_rate_cms = 0.0f;
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_yaw(roll_in, pitch_in, yaw_in, true);
// call position controller
position_control->set_pos_target_z_from_climb_rate_cm(climb_rate_cms);
position_control->update_z_controller();
}
// Guided Limit code
// guided_limit_clear - clear/turn off guided limits
void ModeGuided::guided_limit_clear()
{
guided_limit.timeout_ms = 0;
guided_limit.alt_min_cm = 0.0f;
guided_limit.alt_max_cm = 0.0f;
guided_limit.horiz_max_cm = 0.0f;
}
// set_auto_yaw_mode - sets the yaw mode for auto
void ModeGuided::set_auto_yaw_mode(autopilot_yaw_mode yaw_mode)
{
// return immediately if no change
if (sub.auto_yaw_mode == yaw_mode) {
return;
}
sub.auto_yaw_mode = yaw_mode;
// perform initialisation
switch (sub.auto_yaw_mode) {
case AUTO_YAW_HOLD:
// pilot controls the heading
break;
case AUTO_YAW_LOOK_AT_NEXT_WP:
// wpnav will initialise heading when wpnav's set_destination method is called
break;
case AUTO_YAW_ROI:
// point towards a location held in yaw_look_at_WP
sub.yaw_look_at_WP_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading
// caller should set the yaw_look_at_heading
break;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
sub.yaw_look_ahead_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_RESETTOARMEDYAW:
// initial_armed_bearing will be set during arming so no init required
break;
case AUTO_YAW_RATE:
// set target yaw rate to yaw_look_at_heading_slew
break;
}
}
// get_auto_heading - returns target heading depending upon auto_yaw_mode
// 100hz update rate
float ModeGuided::get_auto_heading()
{
switch (sub.auto_yaw_mode) {
case AUTO_YAW_ROI:
// point towards a location held in roi_WP
return sub.get_roi_yaw();
break;
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
return sub.yaw_look_at_heading;
break;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
return sub.get_look_ahead_yaw();
break;
case AUTO_YAW_RESETTOARMEDYAW:
// changes yaw to be same as when quad was armed
return sub.initial_armed_bearing;
break;
case AUTO_YAW_CORRECT_XTRACK: {
// TODO return current yaw if not in appropriate mode
// Bearing of current track (centidegrees)
float track_bearing = get_bearing_cd(sub.wp_nav.get_wp_origin().xy(), sub.wp_nav.get_wp_destination().xy());
// Bearing from current position towards intermediate position target (centidegrees)
const Vector2f target_vel_xy{position_control->get_vel_target_cms().x, position_control->get_vel_target_cms().y};
float angle_error = 0.0f;
if (target_vel_xy.length() >= position_control->get_max_speed_xy_cms() * 0.1f) {
const float desired_angle_cd = degrees(target_vel_xy.angle()) * 100.0f;
angle_error = wrap_180_cd(desired_angle_cd - track_bearing);
}
float angle_limited = constrain_float(angle_error, -g.xtrack_angle_limit * 100.0f, g.xtrack_angle_limit * 100.0f);
return wrap_360_cd(track_bearing + angle_limited);
}
break;
case AUTO_YAW_LOOK_AT_NEXT_WP:
default:
// point towards next waypoint.
// we don't use wp_bearing because we don't want the vehicle to turn too much during flight
return sub.wp_nav.get_yaw();
break;
}
}
// guided_limit_set - set guided timeout and movement limits
void ModeGuided::guided_limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm)
{
guided_limit.timeout_ms = timeout_ms;
guided_limit.alt_min_cm = alt_min_cm;
guided_limit.alt_max_cm = alt_max_cm;
guided_limit.horiz_max_cm = horiz_max_cm;
}
// guided_limit_init_time_and_pos - initialise guided start time and position as reference for limit checking
// only called from AUTO mode's auto_nav_guided_start function
void ModeGuided::guided_limit_init_time_and_pos()
{
// initialise start time
guided_limit.start_time = AP_HAL::millis();
// initialise start position from current position
guided_limit.start_pos = inertial_nav.get_position_neu_cm();
}
// guided_limit_check - returns true if guided mode has breached a limit
// used when guided is invoked from the NAV_GUIDED_ENABLE mission command
bool ModeGuided::guided_limit_check()
{
// check if we have passed the timeout
if ((guided_limit.timeout_ms > 0) && (AP_HAL::millis() - guided_limit.start_time >= guided_limit.timeout_ms)) {
return true;
}
// get current location
const Vector3f& curr_pos = inertial_nav.get_position_neu_cm();
// check if we have gone below min alt
if (!is_zero(guided_limit.alt_min_cm) && (curr_pos.z < guided_limit.alt_min_cm)) {
return true;
}
// check if we have gone above max alt
if (!is_zero(guided_limit.alt_max_cm) && (curr_pos.z > guided_limit.alt_max_cm)) {
return true;
}
// check if we have gone beyond horizontal limit
if (guided_limit.horiz_max_cm > 0.0f) {
const float horiz_move = get_horizontal_distance_cm(guided_limit.start_pos.xy(), curr_pos.xy());
if (horiz_move > guided_limit.horiz_max_cm) {
return true;
}
}
// if we got this far we must be within limits
return false;
}