ardupilot/libraries/AC_PID/AC_PID.h

153 lines
4.8 KiB
C++
Executable File

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file AC_PID.h
/// @brief Generic PID algorithm, with EEPROM-backed storage of constants.
#ifndef AC_PID_h
#define AC_PID_h
#include <AP_Common.h>
#include <math.h> // for fabs()
/// @class AC_PID
/// @brief Object managing one PID control
class AC_PID {
public:
/// Constructor for PID that saves its settings to EEPROM
///
/// @note PIDs must be named to avoid either multiple parameters with the
/// same name, or an overly complex constructor.
///
/// @param key Storage key assigned to this PID. Should be unique.
/// @param name Name by which the PID is known, or NULL for an anonymous PID.
/// The name is prefixed to the P, I, D, IMAX variable names when
/// they are reported.
/// @param initial_p Initial value for the P term.
/// @param initial_i Initial value for the I term.
/// @param initial_d Initial value for the D term.
/// @param initial_imax Initial value for the imax term.4
///
AC_PID(AP_Var::Key key,
const prog_char_t *name,
const float &initial_p = 0.0,
const float &initial_i = 0.0,
const float &initial_d = 0.0,
const int16_t &initial_imax = 0.0) :
_group(key, name),
// group, index, initial value, name
_kp (&_group, 0, initial_p, PSTR("P")),
_ki (&_group, 1, initial_i, PSTR("I")),
_kd (&_group, 2, initial_d, PSTR("D")),
_imax(&_group, 3, initial_imax, PSTR("IMAX"))
{
// no need for explicit load, assuming that the main code uses AP_Var::load_all.
}
/// Constructor for PID that does not save its settings.
///
/// @param name Name by which the PID is known, or NULL for an anonymous PID.
/// The name is prefixed to the P, I, D, IMAX variable names when
/// they are reported.
/// @param initial_p Initial value for the P term.
/// @param initial_i Initial value for the I term.
/// @param initial_d Initial value for the D term.
/// @param initial_imax Initial value for the imax term.4
///
AC_PID(const prog_char_t *name,
const float &initial_p = 0.0,
const float &initial_i = 0.0,
const float &initial_d = 0.0,
const int16_t &initial_imax = 0.0) :
_group(AP_Var::k_key_none, name),
// group, index, initial value, name
_kp (&_group, 0, initial_p, PSTR("P")),
_ki (&_group, 1, initial_i, PSTR("I")),
_kd (&_group, 2, initial_d, PSTR("D")),
_imax(&_group, 3, initial_imax, PSTR("IMAX"))
{
}
/// Iterate the PID, return the new control value
///
/// Positive error produces positive output.
///
/// @param error The measured error value
/// @param dt The time delta in milliseconds (note
/// that update interval cannot be more
/// than 65.535 seconds due to limited range
/// of the data type).
/// @param scaler An arbitrary scale factor
///
/// @returns The updated control output.
///
int32_t get_pid(int32_t error, float dt);
int32_t get_pi(int32_t error, float dt);
int32_t get_p(int32_t error);
int32_t get_i(int32_t error, float dt);
int32_t get_d(int32_t error, float dt);
/// Reset the PID integrator
///
void reset_I();
/// Load gain properties
///
void load_gains();
/// Save gain properties
///
void save_gains();
/// @name parameter accessors
//@{
/// Overload the function call operator to permit relatively easy initialisation
void operator() (const float p,
const float i,
const float d,
const int16_t imaxval) {
_kp = p; _ki = i; _kd = d; _imax = imaxval;
}
float kP() const { return _kp.get(); }
float kI() const { return _ki.get(); }
float kD() const { return _kd.get(); }
int16_t imax() const { return _imax.get(); }
void kP(const float v) { _kp.set(v); }
void kI(const float v) { _ki.set(v); }
void kD(const float v) { _kd.set(v); }
void imax(const int16_t v) { _imax.set(abs(v)); }
float get_integrator() const { return _integrator; }
private:
AP_Var_group _group;
AP_Float16 _kp;
AP_Float16 _ki;
AP_Float16 _kd;
AP_Int16 _imax;
float _integrator; ///< integrator value
int32_t _last_input; ///< last input for derivative
float _last_derivative; ///< last derivative for low-pass filter
float _output;
float _derivative;
/// Low pass filter cut frequency for derivative calculation.
///
static const float _filter = 7.9577e-3; // Set to "1 / ( 2 * PI * f_cut )";
// Examples for _filter:
// f_cut = 10 Hz -> _filter = 15.9155e-3
// f_cut = 15 Hz -> _filter = 10.6103e-3
// f_cut = 20 Hz -> _filter = 7.9577e-3
// f_cut = 25 Hz -> _filter = 6.3662e-3
// f_cut = 30 Hz -> _filter = 5.3052e-3
};
#endif