mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 00:18:29 -04:00
644 lines
21 KiB
C++
644 lines
21 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
CRSF protocol decoder based on betaflight implementation
|
|
Code by Andy Piper
|
|
*/
|
|
|
|
#include "AP_RCProtocol_config.h"
|
|
|
|
#if AP_RCPROTOCOL_CRSF_ENABLED
|
|
|
|
#include "AP_RCProtocol.h"
|
|
#include "AP_RCProtocol_CRSF.h"
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <AP_Math/crc.h>
|
|
#include <AP_Vehicle/AP_Vehicle_Type.h>
|
|
#include <AP_RCTelemetry/AP_CRSF_Telem.h>
|
|
#include <AP_SerialManager/AP_SerialManager.h>
|
|
|
|
#define CRSF_SUBSET_RC_STARTING_CHANNEL_BITS 5
|
|
#define CRSF_SUBSET_RC_STARTING_CHANNEL_MASK 0x1F
|
|
#define CRSF_SUBSET_RC_RES_CONFIGURATION_BITS 2
|
|
#define CRSF_SUBSET_RC_RES_CONFIGURATION_MASK 0x03
|
|
#define CRSF_SUBSET_RC_RESERVED_CONFIGURATION_BITS 1
|
|
|
|
#define CRSF_RC_CHANNEL_SCALE_LEGACY 0.62477120195241f
|
|
#define CRSF_SUBSET_RC_RES_CONF_10B 0
|
|
#define CRSF_SUBSET_RC_RES_BITS_10B 10
|
|
#define CRSF_SUBSET_RC_RES_MASK_10B 0x03FF
|
|
#define CRSF_SUBSET_RC_CHANNEL_SCALE_10B 1.0f
|
|
#define CRSF_SUBSET_RC_RES_CONF_11B 1
|
|
#define CRSF_SUBSET_RC_RES_BITS_11B 11
|
|
#define CRSF_SUBSET_RC_RES_MASK_11B 0x07FF
|
|
#define CRSF_SUBSET_RC_CHANNEL_SCALE_11B 0.5f
|
|
#define CRSF_SUBSET_RC_RES_CONF_12B 2
|
|
#define CRSF_SUBSET_RC_RES_BITS_12B 12
|
|
#define CRSF_SUBSET_RC_RES_MASK_12B 0x0FFF
|
|
#define CRSF_SUBSET_RC_CHANNEL_SCALE_12B 0.25f
|
|
#define CRSF_SUBSET_RC_RES_CONF_13B 3
|
|
#define CRSF_SUBSET_RC_RES_BITS_13B 13
|
|
#define CRSF_SUBSET_RC_RES_MASK_13B 0x1FFF
|
|
#define CRSF_SUBSET_RC_CHANNEL_SCALE_13B 0.125f
|
|
|
|
/*
|
|
* CRSF protocol
|
|
*
|
|
* CRSF protocol uses a single wire half duplex uart connection.
|
|
* The master sends one frame every 4ms and the slave replies between two frames from the master.
|
|
*
|
|
* 420000 baud
|
|
* not inverted
|
|
* 8 Bit
|
|
* 1 Stop bit
|
|
* Big endian
|
|
* 416666 bit/s = 46667 byte/s (including stop bit) = 21.43us per byte
|
|
* Max frame size is 64 bytes
|
|
* A 64 byte frame plus 1 sync byte can be transmitted in 1393 microseconds.
|
|
*
|
|
* CRSF_TIME_NEEDED_PER_FRAME_US is set conservatively at 1500 microseconds
|
|
*
|
|
* Every frame has the structure:
|
|
* <Device address><Frame length><Type><Payload><CRC>
|
|
*
|
|
* Device address: (uint8_t)
|
|
* Frame length: length in bytes including Type (uint8_t)
|
|
* Type: (uint8_t)
|
|
* CRC: (uint8_t)
|
|
*
|
|
*/
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
//#define CRSF_DEBUG
|
|
//#define CRSF_DEBUG_CHARS
|
|
#ifdef CRSF_DEBUG
|
|
# define debug(fmt, args...) hal.console->printf("CRSF: " fmt "\n", ##args)
|
|
static const char* get_frame_type(uint8_t byte, uint8_t subtype = 0)
|
|
{
|
|
switch(byte) {
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_GPS:
|
|
return "GPS";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_BATTERY_SENSOR:
|
|
return "BATTERY";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_HEARTBEAT:
|
|
return "HEARTBEAT";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_VTX:
|
|
return "VTX";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_VTX_TELEM:
|
|
return "VTX_TELEM";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAM_DEVICE_PING:
|
|
return "PING";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_COMMAND:
|
|
return "COMMAND";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_ATTITUDE:
|
|
return "ATTITUDE";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_FLIGHT_MODE:
|
|
return "FLIGHT_MODE";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAM_DEVICE_INFO:
|
|
return "DEVICE_INFO";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAMETER_READ:
|
|
return "PARAM_READ";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAMETER_SETTINGS_ENTRY:
|
|
return "SETTINGS_ENTRY";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_LINK_STATISTICS:
|
|
return "LINK_STATS";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_RC_CHANNELS_PACKED:
|
|
return "RC";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_SUBSET_RC_CHANNELS_PACKED:
|
|
return "RCv3";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_RC_CHANNELS_PACKED_11BIT:
|
|
return "RCv3_11BIT";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_LINK_STATISTICS_RX:
|
|
return "LINK_STATSv3_RX";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_LINK_STATISTICS_TX:
|
|
return "LINK_STATSv3_TX";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAMETER_WRITE:
|
|
return "UNKNOWN";
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_AP_CUSTOM_TELEM_LEGACY:
|
|
case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_AP_CUSTOM_TELEM:
|
|
switch (subtype) {
|
|
case AP_RCProtocol_CRSF::CRSF_AP_CUSTOM_TELEM_SINGLE_PACKET_PASSTHROUGH:
|
|
return "AP_CUSTOM_SINGLE";
|
|
case AP_RCProtocol_CRSF::CRSF_AP_CUSTOM_TELEM_STATUS_TEXT:
|
|
return "AP_CUSTOM_TEXT";
|
|
case AP_RCProtocol_CRSF::CRSF_AP_CUSTOM_TELEM_MULTI_PACKET_PASSTHROUGH:
|
|
return "AP_CUSTOM_MULTI";
|
|
}
|
|
return "AP_CUSTOM";
|
|
}
|
|
return "UNKNOWN";
|
|
}
|
|
#else
|
|
# define debug(fmt, args...) do {} while(0)
|
|
#endif
|
|
|
|
#define CRSF_FRAME_TIMEOUT_US 10000U // 10ms to account for scheduling delays
|
|
#define CRSF_INTER_FRAME_TIME_US_250HZ 4000U // At fastest, frames are sent by the transmitter every 4 ms, 250 Hz
|
|
#define CRSF_INTER_FRAME_TIME_US_150HZ 6667U // At medium, frames are sent by the transmitter every 6.667 ms, 150 Hz
|
|
#define CRSF_INTER_FRAME_TIME_US_50HZ 20000U // At slowest, frames are sent by the transmitter every 20ms, 50 Hz
|
|
#define CRSF_HEADER_TYPE_LEN (CRSF_HEADER_LEN + 1) // header length including type
|
|
|
|
#define CRSF_DIGITAL_CHANNEL_MIN 172
|
|
#define CRSF_DIGITAL_CHANNEL_MAX 1811
|
|
|
|
#define CRSF_BAUDRATE_1MBIT 1000000U
|
|
#define CRSF_BAUDRATE_2MBIT 2000000U
|
|
|
|
const uint16_t AP_RCProtocol_CRSF::RF_MODE_RATES[RFMode::RF_MODE_MAX_MODES] = {
|
|
4, 50, 150, 250, // CRSF
|
|
4, 25, 50, 100, 150, 200, 250, 500 // ELRS
|
|
};
|
|
|
|
AP_RCProtocol_CRSF* AP_RCProtocol_CRSF::_singleton;
|
|
|
|
AP_RCProtocol_CRSF::AP_RCProtocol_CRSF(AP_RCProtocol &_frontend) : AP_RCProtocol_Backend(_frontend)
|
|
{
|
|
#if !APM_BUILD_TYPE(APM_BUILD_UNKNOWN)
|
|
if (_singleton != nullptr) {
|
|
AP_HAL::panic("Duplicate CRSF handler");
|
|
}
|
|
|
|
_singleton = this;
|
|
#else
|
|
if (_singleton == nullptr) {
|
|
_singleton = this;
|
|
}
|
|
#endif
|
|
#if HAL_CRSF_TELEM_ENABLED && !APM_BUILD_TYPE(APM_BUILD_iofirmware) && !APM_BUILD_TYPE(APM_BUILD_UNKNOWN)
|
|
_uart = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_CRSF, 0);
|
|
if (_uart) {
|
|
start_uart();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
AP_RCProtocol_CRSF::~AP_RCProtocol_CRSF() {
|
|
_singleton = nullptr;
|
|
}
|
|
|
|
// get the protocol string
|
|
const char* AP_RCProtocol_CRSF::get_protocol_string(ProtocolType protocol) const {
|
|
if (protocol == ProtocolType::PROTOCOL_ELRS) {
|
|
return "ELRS";
|
|
} else if (_crsf_v3_active) {
|
|
return "CRSFv3";
|
|
} else {
|
|
return "CRSFv2";
|
|
}
|
|
}
|
|
|
|
// return the link rate as defined by the LinkStatistics
|
|
uint16_t AP_RCProtocol_CRSF::get_link_rate(ProtocolType protocol) const {
|
|
if (protocol == ProtocolType::PROTOCOL_ELRS) {
|
|
return RF_MODE_RATES[_link_status.rf_mode + RFMode::ELRS_RF_MODE_4HZ];
|
|
} else if (protocol == ProtocolType::PROTOCOL_TRACER) {
|
|
return 250;
|
|
} else {
|
|
return RF_MODE_RATES[_link_status.rf_mode];
|
|
}
|
|
}
|
|
|
|
void AP_RCProtocol_CRSF::_process_byte(uint32_t timestamp_us, uint8_t byte)
|
|
{
|
|
//debug("process_byte(0x%x)", byte);
|
|
// we took too long decoding, start again - the RX will only send complete frames so this is unlikely to fail,
|
|
// however thread scheduling can introduce longer delays even when the data has been received
|
|
if (_frame_ofs > 0 && (timestamp_us - _start_frame_time_us) > CRSF_FRAME_TIMEOUT_US) {
|
|
_frame_ofs = 0;
|
|
}
|
|
|
|
// overflow check
|
|
if (_frame_ofs >= CRSF_FRAMELEN_MAX) {
|
|
_frame_ofs = 0;
|
|
}
|
|
|
|
// start of a new frame
|
|
if (_frame_ofs == 0) {
|
|
_start_frame_time_us = timestamp_us;
|
|
}
|
|
|
|
add_to_buffer(_frame_ofs++, byte);
|
|
|
|
// need a header to get the length
|
|
if (_frame_ofs < CRSF_HEADER_TYPE_LEN) {
|
|
return;
|
|
}
|
|
|
|
if (_frame.device_address != DeviceAddress::CRSF_ADDRESS_FLIGHT_CONTROLLER) {
|
|
return;
|
|
}
|
|
|
|
// parse the length
|
|
if (_frame_ofs == CRSF_HEADER_TYPE_LEN) {
|
|
_frame_crc = crc8_dvb_s2(0, _frame.type);
|
|
// check for garbage frame
|
|
if (_frame.length > CRSF_FRAME_PAYLOAD_MAX) {
|
|
_frame_ofs = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// update crc
|
|
if (_frame_ofs < _frame.length + CRSF_HEADER_LEN) {
|
|
_frame_crc = crc8_dvb_s2(_frame_crc, byte);
|
|
}
|
|
|
|
// overflow check
|
|
if (_frame_ofs > _frame.length + CRSF_HEADER_LEN) {
|
|
_frame_ofs = 0;
|
|
return;
|
|
}
|
|
|
|
// decode whatever we got and expect
|
|
if (_frame_ofs == _frame.length + CRSF_HEADER_LEN) {
|
|
log_data(AP_RCProtocol::CRSF, timestamp_us, (const uint8_t*)&_frame, _frame_ofs - CRSF_HEADER_LEN);
|
|
|
|
// we consumed the partial frame, reset
|
|
_frame_ofs = 0;
|
|
|
|
// bad CRC (payload start is +1 from frame start, so need to subtract that from frame length to get index)
|
|
if (_frame_crc != _frame.payload[_frame.length - 2]) {
|
|
return;
|
|
}
|
|
|
|
_last_frame_time_us = _last_rx_frame_time_us = timestamp_us;
|
|
// decode here
|
|
if (decode_crsf_packet()) {
|
|
_last_tx_frame_time_us = timestamp_us; // we have received a frame from the transmitter
|
|
add_input(MAX_CHANNELS, _channels, false, _link_status.rssi, _link_status.link_quality);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AP_RCProtocol_CRSF::update(void)
|
|
{
|
|
// if we are in standalone mode, process data from the uart
|
|
if (_uart) {
|
|
uint32_t now = AP_HAL::millis();
|
|
// for some reason it's necessary to keep trying to start the uart until we get data
|
|
if (now - _last_uart_start_time_ms > 1000U && _last_frame_time_us == 0) {
|
|
start_uart();
|
|
_last_uart_start_time_ms = now;
|
|
}
|
|
uint32_t n = _uart->available();
|
|
n = MIN(n, 255U);
|
|
for (uint8_t i = 0; i < n; i++) {
|
|
int16_t b = _uart->read();
|
|
if (b >= 0) {
|
|
_process_byte(AP_HAL::micros(), uint8_t(b));
|
|
}
|
|
}
|
|
}
|
|
|
|
// never received RC frames, but have received CRSF frames so make sure we give the telemetry opportunity to run
|
|
uint32_t now = AP_HAL::micros();
|
|
if (_last_frame_time_us > 0 && (!get_rc_input_count() || !is_tx_active())
|
|
&& now - _last_frame_time_us > CRSF_INTER_FRAME_TIME_US_250HZ) {
|
|
process_telemetry(false);
|
|
_last_frame_time_us = now;
|
|
}
|
|
|
|
#if AP_RC_CHANNEL_ENABLED
|
|
//Check if LQ is to be reported in place of RSSI
|
|
_use_lq_for_rssi = rc().option_is_enabled(RC_Channels::Option::USE_CRSF_LQ_AS_RSSI);
|
|
#endif
|
|
}
|
|
|
|
// write out a frame of any type
|
|
void AP_RCProtocol_CRSF::write_frame(Frame* frame)
|
|
{
|
|
AP_HAL::UARTDriver *uart = get_current_UART();
|
|
|
|
if (!uart) {
|
|
return;
|
|
}
|
|
// calculate crc
|
|
uint8_t crc = crc8_dvb_s2(0, frame->type);
|
|
for (uint8_t i = 0; i < frame->length - 2; i++) {
|
|
crc = crc8_dvb_s2(crc, frame->payload[i]);
|
|
}
|
|
frame->payload[frame->length - 2] = crc;
|
|
|
|
uart->write((uint8_t*)frame, frame->length + 2);
|
|
uart->flush();
|
|
|
|
#ifdef CRSF_DEBUG
|
|
hal.console->printf("CRSF: writing %s:", get_frame_type(frame->type, frame->payload[0]));
|
|
for (uint8_t i = 0; i < frame->length + 2; i++) {
|
|
uint8_t val = ((uint8_t*)frame)[i];
|
|
#ifdef CRSF_DEBUG_CHARS
|
|
if (val >= 32 && val <= 126) {
|
|
hal.console->printf(" 0x%x '%c'", val, (char)val);
|
|
} else {
|
|
#endif
|
|
hal.console->printf(" 0x%x", val);
|
|
#ifdef CRSF_DEBUG_CHARS
|
|
}
|
|
#endif
|
|
}
|
|
hal.console->printf("\n");
|
|
#endif
|
|
}
|
|
|
|
bool AP_RCProtocol_CRSF::decode_crsf_packet()
|
|
{
|
|
#ifdef CRSF_DEBUG
|
|
hal.console->printf("CRSF: received %s:", get_frame_type(_frame.type));
|
|
uint8_t* fptr = (uint8_t*)&_frame;
|
|
for (uint8_t i = 0; i < _frame.length + 2; i++) {
|
|
#ifdef CRSF_DEBUG_CHARS
|
|
if (fptr[i] >= 32 && fptr[i] <= 126) {
|
|
hal.console->printf(" 0x%x '%c'", fptr[i], (char)fptr[i]);
|
|
} else {
|
|
#endif
|
|
hal.console->printf(" 0x%x", fptr[i]);
|
|
#ifdef CRSF_DEBUG_CHARS
|
|
}
|
|
#endif
|
|
}
|
|
hal.console->printf("\n");
|
|
#endif
|
|
|
|
bool rc_active = false;
|
|
|
|
switch (_frame.type) {
|
|
case CRSF_FRAMETYPE_RC_CHANNELS_PACKED:
|
|
// scale factors defined by TBS - TICKS_TO_US(x) ((x - 992) * 5 / 8 + 1500)
|
|
decode_11bit_channels((const uint8_t*)(&_frame.payload), CRSF_MAX_CHANNELS, _channels, 5U, 8U, 880U);
|
|
_crsf_v3_active = false;
|
|
rc_active = !_uart; // only accept RC data if we are not in standalone mode
|
|
break;
|
|
case CRSF_FRAMETYPE_LINK_STATISTICS:
|
|
process_link_stats_frame((uint8_t*)&_frame.payload);
|
|
break;
|
|
case CRSF_FRAMETYPE_SUBSET_RC_CHANNELS_PACKED:
|
|
decode_variable_bit_channels((const uint8_t*)(&_frame.payload), _frame.length, CRSF_MAX_CHANNELS, _channels);
|
|
_crsf_v3_active = true;
|
|
rc_active = !_uart; // only accept RC data if we are not in standalone mode
|
|
break;
|
|
case CRSF_FRAMETYPE_LINK_STATISTICS_RX:
|
|
process_link_stats_rx_frame((uint8_t*)&_frame.payload);
|
|
break;
|
|
case CRSF_FRAMETYPE_LINK_STATISTICS_TX:
|
|
process_link_stats_tx_frame((uint8_t*)&_frame.payload);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#if HAL_CRSF_TELEM_ENABLED
|
|
if (AP_CRSF_Telem::process_frame(FrameType(_frame.type), (uint8_t*)&_frame.payload)) {
|
|
process_telemetry();
|
|
}
|
|
// process any pending baudrate changes before reading another frame
|
|
if (_new_baud_rate > 0) {
|
|
AP_HAL::UARTDriver *uart = get_current_UART();
|
|
|
|
if (uart) {
|
|
// wait for all the pending data to be sent
|
|
while (uart->tx_pending()) {
|
|
hal.scheduler->delay_microseconds(10);
|
|
}
|
|
// now wait for 4ms to account for RX transmission and processing
|
|
hal.scheduler->delay(4);
|
|
// change the baud rate
|
|
uart->begin(_new_baud_rate);
|
|
}
|
|
_new_baud_rate = 0;
|
|
}
|
|
#endif
|
|
|
|
return rc_active;
|
|
}
|
|
|
|
/*
|
|
decode channels from the standard 11bit format (used by CRSF, SBUS, FPort and FPort2)
|
|
must be used on multiples of 8 channels
|
|
*/
|
|
void AP_RCProtocol_CRSF::decode_variable_bit_channels(const uint8_t* payload, uint8_t frame_length, uint8_t nchannels, uint16_t *values)
|
|
{
|
|
const SubsetChannelsFrame* channel_data = (const SubsetChannelsFrame*)payload;
|
|
|
|
// get the channel resolution settings
|
|
uint8_t channelBits;
|
|
uint16_t channelMask;
|
|
float channelScale;
|
|
|
|
switch (channel_data->res_configuration) {
|
|
case CRSF_SUBSET_RC_RES_CONF_10B:
|
|
channelBits = CRSF_SUBSET_RC_RES_BITS_10B;
|
|
channelMask = CRSF_SUBSET_RC_RES_MASK_10B;
|
|
channelScale = CRSF_SUBSET_RC_CHANNEL_SCALE_10B;
|
|
break;
|
|
default:
|
|
case CRSF_SUBSET_RC_RES_CONF_11B:
|
|
channelBits = CRSF_SUBSET_RC_RES_BITS_11B;
|
|
channelMask = CRSF_SUBSET_RC_RES_MASK_11B;
|
|
channelScale = CRSF_SUBSET_RC_CHANNEL_SCALE_11B;
|
|
break;
|
|
case CRSF_SUBSET_RC_RES_CONF_12B:
|
|
channelBits = CRSF_SUBSET_RC_RES_BITS_12B;
|
|
channelMask = CRSF_SUBSET_RC_RES_MASK_12B;
|
|
channelScale = CRSF_SUBSET_RC_CHANNEL_SCALE_12B;
|
|
break;
|
|
case CRSF_SUBSET_RC_RES_CONF_13B:
|
|
channelBits = CRSF_SUBSET_RC_RES_BITS_13B;
|
|
channelMask = CRSF_SUBSET_RC_RES_MASK_13B;
|
|
channelScale = CRSF_SUBSET_RC_CHANNEL_SCALE_13B;
|
|
break;
|
|
}
|
|
|
|
// calculate the number of channels packed
|
|
uint8_t numOfChannels = MIN(uint8_t(((frame_length - 2) * 8 - CRSF_SUBSET_RC_STARTING_CHANNEL_BITS) / channelBits), CRSF_MAX_CHANNELS);
|
|
|
|
// unpack the channel data
|
|
uint8_t bitsMerged = 0;
|
|
uint32_t readValue = 0;
|
|
uint8_t readByteIndex = 1;
|
|
|
|
for (uint8_t n = 0; n < numOfChannels; n++) {
|
|
while (bitsMerged < channelBits) {
|
|
// check for corrupt frame
|
|
if (readByteIndex >= CRSF_FRAME_PAYLOAD_MAX) {
|
|
return;
|
|
}
|
|
uint8_t readByte = payload[readByteIndex++];
|
|
readValue |= ((uint32_t) readByte) << bitsMerged;
|
|
bitsMerged += 8;
|
|
}
|
|
// check for corrupt frame
|
|
if (uint8_t(channel_data->starting_channel + n) >= CRSF_MAX_CHANNELS) {
|
|
return;
|
|
}
|
|
_channels[channel_data->starting_channel + n] =
|
|
uint16_t(channelScale * float(uint16_t(readValue & channelMask)) + 988);
|
|
readValue >>= channelBits;
|
|
bitsMerged -= channelBits;
|
|
}
|
|
}
|
|
|
|
// send out telemetry
|
|
bool AP_RCProtocol_CRSF::process_telemetry(bool check_constraint)
|
|
{
|
|
|
|
AP_HAL::UARTDriver *uart = get_current_UART();
|
|
if (!uart) {
|
|
return false;
|
|
}
|
|
|
|
if (!telem_available) {
|
|
#if HAL_CRSF_TELEM_ENABLED && !APM_BUILD_TYPE(APM_BUILD_iofirmware)
|
|
if (AP_CRSF_Telem::get_telem_data(&_telemetry_frame, is_tx_active())) {
|
|
telem_available = true;
|
|
} else {
|
|
return false;
|
|
}
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
write_frame(&_telemetry_frame);
|
|
// get fresh telem_data in the next call
|
|
telem_available = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// process link statistics to get RSSI
|
|
void AP_RCProtocol_CRSF::process_link_stats_frame(const void* data)
|
|
{
|
|
const LinkStatisticsFrame* link = (const LinkStatisticsFrame*)data;
|
|
|
|
uint8_t rssi_dbm;
|
|
if (link->active_antenna == 0) {
|
|
rssi_dbm = link->uplink_rssi_ant1;
|
|
} else {
|
|
rssi_dbm = link->uplink_rssi_ant2;
|
|
}
|
|
_link_status.link_quality = link->uplink_status;
|
|
if (_use_lq_for_rssi) {
|
|
_link_status.rssi = derive_scaled_lq_value(link->uplink_status);
|
|
} else{
|
|
// AP rssi: -1 for unknown, 0 for no link, 255 for maximum link
|
|
if (rssi_dbm < 50) {
|
|
_link_status.rssi = 255;
|
|
} else if (rssi_dbm > 120) {
|
|
_link_status.rssi = 0;
|
|
} else {
|
|
// this is an approximation recommended by Remo from TBS
|
|
_link_status.rssi = int16_t(roundf((1.0f - (rssi_dbm - 50.0f) / 70.0f) * 255.0f));
|
|
}
|
|
}
|
|
|
|
_link_status.rf_mode = MIN(link->rf_mode, 7U);
|
|
}
|
|
|
|
// process link statistics to get RX RSSI
|
|
void AP_RCProtocol_CRSF::process_link_stats_rx_frame(const void* data)
|
|
{
|
|
const LinkStatisticsRXFrame* link = (const LinkStatisticsRXFrame*)data;
|
|
|
|
if (_use_lq_for_rssi) {
|
|
_link_status.rssi = derive_scaled_lq_value(link->link_quality);
|
|
} else {
|
|
_link_status.rssi = link->rssi_percent * 255.0f * 0.01f;
|
|
}
|
|
}
|
|
|
|
// process link statistics to get TX RSSI
|
|
void AP_RCProtocol_CRSF::process_link_stats_tx_frame(const void* data)
|
|
{
|
|
const LinkStatisticsTXFrame* link = (const LinkStatisticsTXFrame*)data;
|
|
|
|
if (_use_lq_for_rssi) {
|
|
_link_status.rssi = derive_scaled_lq_value(link->link_quality);
|
|
} else {
|
|
_link_status.rssi = link->rssi_percent * 255.0f * 0.01f;
|
|
}
|
|
}
|
|
|
|
// process a byte provided by a uart
|
|
void AP_RCProtocol_CRSF::process_byte(uint8_t byte, uint32_t baudrate)
|
|
{
|
|
// reject RC data if we have been configured for standalone mode
|
|
if ((baudrate != CRSF_BAUDRATE && baudrate != CRSF_BAUDRATE_1MBIT && baudrate != CRSF_BAUDRATE_2MBIT) || _uart) {
|
|
return;
|
|
}
|
|
_process_byte(AP_HAL::micros(), byte);
|
|
}
|
|
|
|
// start the uart if we have one
|
|
void AP_RCProtocol_CRSF::start_uart()
|
|
{
|
|
_uart->configure_parity(0);
|
|
_uart->set_stop_bits(1);
|
|
_uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
|
|
_uart->set_options(_uart->get_options() & ~AP_HAL::UARTDriver::OPTION_RXINV);
|
|
_uart->begin(get_bootstrap_baud_rate());
|
|
}
|
|
|
|
// change the baudrate of the protocol if we are able
|
|
bool AP_RCProtocol_CRSF::change_baud_rate(uint32_t baudrate)
|
|
{
|
|
AP_HAL::UARTDriver* uart = get_available_UART();
|
|
if (uart == nullptr) {
|
|
return false;
|
|
}
|
|
#if !defined(STM32H7)
|
|
if (baudrate > get_bootstrap_baud_rate() && !uart->is_dma_enabled()) {
|
|
return false;
|
|
}
|
|
#endif
|
|
if (baudrate > CRSF_BAUDRATE_2MBIT) {
|
|
return false;
|
|
}
|
|
|
|
_new_baud_rate = baudrate;
|
|
|
|
return true;
|
|
}
|
|
|
|
// change the bootstrap baud rate to ELRS standard if configured
|
|
void AP_RCProtocol_CRSF::process_handshake(uint32_t baudrate)
|
|
{
|
|
AP_HAL::UARTDriver *uart = get_current_UART();
|
|
|
|
// only change the baudrate if we are bootstrapping CRSF
|
|
if (uart == nullptr
|
|
|| baudrate != CRSF_BAUDRATE
|
|
|| baudrate == get_bootstrap_baud_rate()
|
|
|| uart->get_baud_rate() == get_bootstrap_baud_rate()
|
|
|| !protocol_enabled(AP_RCProtocol::CRSF)) {
|
|
return;
|
|
}
|
|
|
|
uart->begin(get_bootstrap_baud_rate());
|
|
}
|
|
|
|
//returns uplink link quality on 0-255 scale
|
|
int16_t AP_RCProtocol_CRSF::derive_scaled_lq_value(uint8_t uplink_lq)
|
|
{
|
|
return int16_t(roundf(constrain_float(uplink_lq*2.5f,0,255)));
|
|
}
|
|
|
|
namespace AP {
|
|
AP_RCProtocol_CRSF* crsf() {
|
|
return AP_RCProtocol_CRSF::get_singleton();
|
|
}
|
|
};
|
|
|
|
#endif // AP_RCPROTOCOL_CRSF_ENABLED
|