ardupilot/libraries/AP_Radio/AP_Radio_bk2425.cpp

1427 lines
55 KiB
C++

#include "AP_Radio_config.h"
#if AP_RADIO_BK2425_ENABLED
/*
driver for Beken_2425 radio
*/
#include <AP_HAL/AP_HAL.h>
//#pragma GCC optimize("O0")
#include <AP_Math/AP_Math.h>
#include "AP_Radio_bk2425.h"
#include <utility>
#include <stdio.h>
#include <StorageManager/StorageManager.h>
#include <AP_Notify/AP_Notify.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
// start of 12 byte CPU ID
#ifndef UDID_START
#define UDID_START 0x1FFF7A10
#endif
#define TIMEOUT_PRIORITY 250 // Right above timer thread
#define EVT_TIMEOUT EVENT_MASK(0) // Event in the irq handler thread triggered by a timeout interrupt
#define EVT_IRQ EVENT_MASK(1) // Event in the irq handler thread triggered by a radio IRQ (Tx finished, Rx finished, MaxRetries limit)
#define EVT_BIND EVENT_MASK(2) // (not used yet) The user has clicked on the "start bind" button in the web interface (or equivalent).
extern const AP_HAL::HAL& hal;
// Output debug information on the UART, wrapped in MavLink packets
#define Debug(level, fmt, args...) do { if ((level) <= get_debug_level()) { hal.console->printf(fmt, ##args); }} while (0)
// Output fast debug information on the UART, in raw format. MavLink should be disabled if you want to understand these messages.
// This is for debugging issues with frequency hopping and synchronisation.
#define DebugPrintf(level, fmt, args...) do { if (AP_Radio_beken::radio_singleton && ((level) <= AP_Radio_beken::radio_singleton->get_debug_level())) { printf(fmt, ##args); }} while (0)
// Output debug information on the mavlink to the UART connected to the WiFi, wrapped in MavLink packets
#define DebugMavlink(level, fmt, args...) do { if ((level) <= get_debug_level()) { gcs().send_text(MAV_SEVERITY_INFO, fmt, ##args); }} while (0)
#if SUPPORT_BK_DEBUG_PINS
#define DEBUG1_HIGH() (palSetLine(HAL_GPIO_PIN_DEBUG1))
#define DEBUG1_LOW() (palClearLine(HAL_GPIO_PIN_DEBUG1))
#define DEBUG2_HIGH() (palSetLine(HAL_GPIO_PIN_DEBUG2))
#define DEBUG2_LOW() (palClearLine(HAL_GPIO_PIN_DEBUG2))
#else
#define DEBUG1_HIGH() do {} while (0)
#define DEBUG1_LOW() do {} while (0)
#define DEBUG2_HIGH() do {} while (0)
#define DEBUG2_LOW() do {} while (0)
#endif
// object instance for trampoline
AP_Radio_beken *AP_Radio_beken::radio_singleton;
thread_t *AP_Radio_beken::_irq_handler_ctx;
virtual_timer_t AP_Radio_beken::timeout_vt;
// See variable definitions in AP_Radio_bk2425.h for comments
uint32_t AP_Radio_beken::isr_irq_time_us;
uint32_t AP_Radio_beken::isr_timeout_time_us;
uint32_t AP_Radio_beken::next_switch_us;
uint32_t AP_Radio_beken::bind_time_ms;
SyncTiming AP_Radio_beken::synctm; // Let the IRQ see the interpacket timing
// -----------------------------------------------------------------------------
// We have received a packet
// Sort out our timing relative to the tx to avoid clock drift
void SyncTiming::Rx(uint32_t when)
{
uint32_t ld = delta_rx_time_us;
uint32_t d = when - rx_time_us;
if ((d > ld - DIFF_DELTA_RX) && (d < ld + DIFF_DELTA_RX)) { // Two deltas are similar to each other
if ((d > TARGET_DELTA_RX-SLOP_DELTA_RX) && (d < TARGET_DELTA_RX+SLOP_DELTA_RX)) { // delta is within range of single packet distance
// Use filter to change the estimate of the time in microseconds between the transmitters packet (according to OUR clock)
sync_time_us = ((sync_time_us * (256-16)) + (d * 16)) / 256;
}
}
rx_time_us = when;
delta_rx_time_us = d;
last_delta_rx_time_us = ld;
}
// -----------------------------------------------------------------------------
// Implement queuing (a 92 byte packet) in the circular buffer
void FwUpload::queue(const uint8_t *pSrc, uint8_t len)
{
if (len == 0 || len > free_length()) {
return; // Safety check for out of space error
}
if (pending_head + len > SZ_BUFFER) {
uint8_t n = SZ_BUFFER-pending_head;
memcpy(&pending_data[pending_head], pSrc, n);
memcpy(&pending_data[0], pSrc+n, len-n);
} else {
memcpy(&pending_data[pending_head], pSrc, len);
}
pending_head = (pending_head + len) & (SZ_BUFFER-1);
added += len;
}
// -----------------------------------------------------------------------------
// Implement dequeing (a 16 byte packet)
void FwUpload::dequeue(uint8_t *pDst, uint8_t len)
{
if (len == 0 || len > pending_length()) {
return; // Safety check for underflow error
}
if (pending_tail + len > SZ_BUFFER) {
uint8_t n = SZ_BUFFER-pending_tail;
memcpy(pDst, &pending_data[pending_tail], n);
memcpy(pDst+n, &pending_data[0], len-n);
} else {
memcpy(pDst, &pending_data[pending_tail], len);
}
pending_tail = (pending_tail + len) & (SZ_BUFFER-1);
sent += len;
}
// -----------------------------------------------------------------------------
/*
constructor
*/
AP_Radio_beken::AP_Radio_beken(AP_Radio &_radio) :
AP_Radio_backend(_radio),
beken(hal.spi->get_device("beken")) // trace this later - its on libraries/AP_HAL_ChibiOS/SPIDevice.cpp:92
{
// link to instance for irq_trampoline
// (temporary) go into test mode
radio_singleton = this;
beken.fcc.fcc_mode = 0;
beken.fcc.channel = 23;
beken.fcc.power = 7+1; // Full power
}
/*
initialise radio
*/
bool AP_Radio_beken::init(void)
{
if (_irq_handler_ctx != nullptr) {
AP_HAL::panic("AP_Radio_beken: double instantiation of irq_handler\n");
}
chVTObjectInit(&timeout_vt);
_irq_handler_ctx = chThdCreateFromHeap(NULL,
THD_WORKING_AREA_SIZE(2048),
"radio_bk2425",
TIMEOUT_PRIORITY, /* Initial priority. */
irq_handler_thd, /* Thread function. */
NULL); /* Thread parameter. */
return reset();
}
/*
reset radio
*/
bool AP_Radio_beken::reset(void)
{
if (!beken.lock_bus()) {
return false;
}
radio_init();
beken.unlock_bus();
return true;
}
/*
return statistics structure from radio
*/
const AP_Radio::stats &AP_Radio_beken::get_stats(void)
{
return stats;
}
/*
read one pwm channel from radio
*/
uint16_t AP_Radio_beken::read(uint8_t chan)
{
if (chan >= BEKEN_MAX_CHANNELS) {
return 0;
}
if (!valid_connection) {
return (chan < 4) ? 1500u : 0u;
}
return pwm_channels[chan];
}
/*
update status - called from main thread
*/
void AP_Radio_beken::update(void)
{
check_fw_ack();
}
/*
return number of active channels, and updates the data
*/
uint8_t AP_Radio_beken::num_channels(void)
{
uint32_t now = AP_HAL::millis();
uint8_t chan = get_rssi_chan();
if ((chan > 0) && ((chan-1) < BEKEN_MAX_CHANNELS)) {
uint8_t value = BK_RSSI_DEFAULT; // Fixed value that will not update (halfway in the RSSI range for Cypress chips, 0..31)
if (beken.fcc.enable_cd) {
if (beken.fcc.last_cd) {
value += 4;
} else {
value -= 4;
}
}
if (t_status.pps == 0) {
value = BK_RSSI_MIN; // No packets = no RSSI
}
pwm_channels[chan-1] = value;
chan_count = MAX(chan_count, chan);
}
chan = get_pps_chan();
if ((chan > 0) && ((chan-1) < BEKEN_MAX_CHANNELS)) {
pwm_channels[chan-1] = t_status.pps; // How many packets received per second
chan_count = MAX(chan_count, chan);
}
chan = get_tx_rssi_chan();
if ((chan > 0) && ((chan-1) < BEKEN_MAX_CHANNELS)) {
pwm_channels[chan-1] = BK_RSSI_DEFAULT; // Fixed value that will not update (halfway in the RSSI range for Cypress chips, 0..31)
chan_count = MAX(chan_count, chan);
}
chan = get_tx_pps_chan();
if ((chan > 0) && ((chan-1) < BEKEN_MAX_CHANNELS)) {
pwm_channels[chan-1] = tx_pps;
chan_count = MAX(chan_count, chan);
}
// Every second, update the statistics
if (now - last_pps_ms > 1000) {
last_pps_ms = now;
t_status.pps = stats.recv_packets - last_stats.recv_packets;
last_stats = stats;
if (stats.lost_packets != 0 || stats.timeouts != 0) {
Debug(3,"lost=%lu timeouts=%lu\n", stats.lost_packets, stats.timeouts);
}
stats.lost_packets=0;
stats.timeouts=0;
if (have_tx_pps == 1) { // Have we had tx pps recently?
tx_pps = 0;
}
if (have_tx_pps == 2) { // We have had it at some time
have_tx_pps = 1; // Not recently
}
}
return chan_count;
}
/*
return time of last receive in microseconds
*/
uint32_t AP_Radio_beken::last_recv_us(void)
{
return synctm.packet_timer;
}
/*
send len bytes as a single packet
*/
bool AP_Radio_beken::send(const uint8_t *pkt, uint16_t len)
{
// disabled for now
return false;
}
// Borrow the CRC32 algorithm from AP_HAL_SITL
// Not exactly fast algorithm as it is bit based
#define CRC32_POLYNOMIAL 0xEDB88320L
static uint32_t CRC32Value(uint32_t icrc)
{
int i;
uint32_t crc = icrc;
for ( i = 8 ; i > 0; i-- ) {
if ( crc & 1 ) {
crc = ( crc >> 1 ) ^ CRC32_POLYNOMIAL;
} else {
crc >>= 1;
}
}
return crc;
}
static uint32_t CalculateBlockCRC32(uint32_t length, const uint8_t *buffer, uint32_t crc)
{
while ( length-- != 0 ) {
crc = ((crc >> 8) & 0x00FFFFFFL) ^ (CRC32Value(((uint32_t) crc ^ *buffer++) & 0xff));
}
return ( crc );
}
/*
initialise the radio
*/
void AP_Radio_beken::radio_init(void)
{
DebugPrintf(1, "radio_init\r\n");
beken.SetRBank(1);
uint8_t id = beken.ReadReg(BK2425_R1_WHOAMI); // id is now 99
beken.SetRBank(0); // Reset to default register bank.
if (id != BK_CHIP_ID_BK2425) {
Debug(1, "bk2425: radio not found\n"); // We have to keep trying because it takes time to initialise
return; // Failure
}
{
uint8_t serialid[12];
memcpy(serialid, (const void *)UDID_START, 12); // 0x1FFF7A10ul on STM32F412 (see Util::get_system_id)
uint32_t drone_crc = CalculateBlockCRC32(12, serialid, 0xfffffffful);
if ((drone_crc & 0xff) == 0) {
++drone_crc; // Ensure that the first byte (LSB) is non-zero for all drone CRC, for benefit of old (buggy) tx code.
}
myDroneId[0] = drone_crc;
myDroneId[1] = drone_crc >> 8;
myDroneId[2] = drone_crc >> 16;
myDroneId[3] = drone_crc >> 24;
DebugPrintf(1, "DroneCrc:%08x\r\n", drone_crc);
}
Debug(1, "beken: radio_init starting\n");
beken.bkReady = 0;
spd = beken.gTxSpeed;
beken.SwitchToIdleMode();
hal.scheduler->delay(100); // delay more than 50ms.
// Initialise Beken registers
beken.SetRBank(0);
beken.InitBank0Registers(beken.gTxSpeed);
beken.SetRBank(1);
beken.InitBank1Registers(beken.gTxSpeed);
hal.scheduler->delay(100); // delay more than 50ms.
beken.SetRBank(0);
beken.SwitchToRxMode(); // switch to RX mode
beken.bkReady = 1;
hal.scheduler->delay_microseconds(10*1000); // 10ms seconds delay
// setup handler for rising edge of IRQ pin
hal.gpio->attach_interrupt(HAL_GPIO_RADIO_IRQ, trigger_irq_radio_event, AP_HAL::GPIO::INTERRUPT_FALLING);
if (load_bind_info()) { // See if we already have bound to the address of a tx
Debug(3,"Loaded bind info\n");
nextChannel(1);
}
beken.EnableCarrierDetect(true); // For autobinding
isr_irq_time_us = isr_timeout_time_us = AP_HAL::micros();
next_switch_us = isr_irq_time_us + 10000;
chVTSet(&timeout_vt, chTimeMS2I(10), trigger_timeout_event, nullptr); // Initial timeout?
if (3 <= get_debug_level()) {
beken.DumpRegisters();
}
}
// ----------------------------------------------------------------------------
void AP_Radio_beken::trigger_irq_radio_event()
{
//we are called from ISR context
// DEBUG2_HIGH();
chSysLockFromISR();
isr_irq_time_us = AP_HAL::micros();
chEvtSignalI(_irq_handler_ctx, EVT_IRQ);
chSysUnlockFromISR();
// DEBUG2_LOW();
}
// ----------------------------------------------------------------------------
void AP_Radio_beken::trigger_timeout_event(virtual_timer_t* vt, void *arg)
{
(void)arg;
//we are called from ISR context
// DEBUG2_HIGH();
// DEBUG2_LOW();
// DEBUG2_HIGH();
isr_timeout_time_us = AP_HAL::micros();
chSysLockFromISR();
chEvtSignalI(_irq_handler_ctx, EVT_TIMEOUT);
chSysUnlockFromISR();
// DEBUG2_LOW();
}
// ----------------------------------------------------------------------------
// The user has clicked on the "Start Bind" button on the web interface
void AP_Radio_beken::start_recv_bind(void)
{
chan_count = 0;
synctm.packet_timer = AP_HAL::micros();
radio_singleton->bind_time_ms = AP_HAL::millis();
chEvtSignal(_irq_handler_ctx, EVT_BIND);
Debug(1,"Starting bind\n");
}
// ----------------------------------------------------------------------------
// handle a data96 mavlink packet for fw upload
void AP_Radio_beken::handle_data_packet(mavlink_channel_t chan, const mavlink_data96_t &m)
{
if (sem.take_nonblocking()) {
fwupload.chan = chan;
fwupload.need_ack = false;
if (m.type == 43) {
// sending a tune to play - for development testing
Debug(4, "got tune data96 of len %u from chan %u\n", m.len, chan);
fwupload.reset();
fwupload.fw_type = TELEM_PLAY;
fwupload.file_length = MIN(m.len, 90);
fwupload.file_length_round = (fwupload.file_length + 1 + 0x0f) & ~0x0f; // Round up to multiple of 16 (with nul-terminator)
fwupload.queue(&m.data[0], fwupload.file_length);
if (fwupload.file_length_round > fwupload.file_length) {
uint8_t pad[16] = {0};
fwupload.queue(&pad[0], fwupload.file_length_round - fwupload.file_length);
}
} else { // m.type == 42
// sending DFU
uint32_t ofs=0;
memcpy(&ofs, &m.data[0], 4); // Assumes the endianness of the data!
Debug(4, "got data96 of len %u from chan %u at offset %u\n", m.len, chan, unsigned(ofs));
if (ofs == 0) {
fwupload.reset();
// Typically file_length = 0x3906; file_length_round = 0x3980;
fwupload.file_length = ((uint16_t(m.data[4]) << 8) | (m.data[5])) + 6; // Add the header to the length
fwupload.file_length_round = (fwupload.file_length + 0x7f) & ~0x7f; // Round up to multiple of 128
}
if (ofs != fwupload.added) {
fwupload.need_ack = true; // We want more data
} else {
// sending a chunk of firmware OTA upload
fwupload.fw_type = TELEM_FW;
fwupload.queue(&m.data[4], MIN(m.len-4, 92)); // This might fail if mavlink sends it too fast to me, in which case it will retry later
}
}
sem.give();
}
}
// ----------------------------------------------------------------------------
// Update the telemetry status variable; can be called in irq thread
// since the functions it calls are lightweight
void AP_Radio_beken::update_SRT_telemetry(void)
{
t_status.flags = 0;
t_status.flags |= AP_Notify::flags.gps_status >= 3?TELEM_FLAG_GPS_OK:0;
t_status.flags |= AP_Notify::flags.pre_arm_check?TELEM_FLAG_ARM_OK:0;
t_status.flags |= AP_Notify::flags.failsafe_battery?0:TELEM_FLAG_BATT_OK;
t_status.flags |= hal.util->get_soft_armed()?TELEM_FLAG_ARMED:0;
t_status.flags |= AP_Notify::flags.have_pos_abs?TELEM_FLAG_POS_OK:0;
t_status.flags |= AP_Notify::flags.video_recording?TELEM_FLAG_VIDEO:0;
t_status.flight_mode = AP_Notify::flags.flight_mode;
t_status.tx_max = get_tx_max_power();
t_status.note_adjust = get_tx_buzzer_adjust();
}
// ----------------------------------------------------------------------------
// Update a radio control packet
// Called from IRQ context.
// Returns true for DFU or TUNE, false for telemetry
bool AP_Radio_beken::UpdateTxData(void)
{
// send reboot command if appropriate
fwupload.counter++;
if ((fwupload.acked >= fwupload.file_length_round) &&
(fwupload.fw_type == TELEM_FW) && // Not a tune request
(fwupload.rx_ack) &&
(fwupload.acked >= 0x1000)) { // Sanity check
fwupload.rx_reboot = true;
}
if (fwupload.rx_reboot && // Sanity check
((fwupload.counter & 0x01) != 0) && // Avoid starvation of telemetry
sem.take_nonblocking()) { // Is the other threads busy with fwupload data?
fwupload.rx_ack = false;
// Tell the Tx to reboot
packetFormatDfu* tx = &beken.pktDataDfu;
tx->packetType = BK_PKT_TYPE_DFU;
uint16_t addr = 0x0002; // Command to reboot
tx->address_lo = addr & 0xff;
tx->address_hi = (addr >> 8);
DebugPrintf(2, "reboot %u %u\r\n", fwupload.acked, fwupload.file_length_round);
sem.give();
return true;
} else if ((fwupload.acked >= fwupload.file_length_round) &&
(fwupload.fw_type == TELEM_PLAY) && // Atune request
(fwupload.rx_ack) &&
((fwupload.counter & 0x01) != 0) && // Avoid starvation of telemetry
(fwupload.acked > 0) && // Sanity check
sem.take_nonblocking()) { // Is the other threads busy with fwupload data?
fwupload.reset();
// Tell the Tx the tune is complete
packetFormatDfu* tx = &beken.pktDataDfu;
tx->packetType = BK_PKT_TYPE_TUNE;
uint16_t addr = 0x0004; // Command to finalise the tune
tx->address_lo = addr & 0xff;
tx->address_hi = (addr >> 8);
sem.give();
return true;
}
// send firmware update packet for 7/8 of packets if any data pending
else if ((fwupload.added >= (fwupload.acked + SZ_DFU)) && // Do we have a new packet to upload?
((fwupload.counter & 0x07) != 0) && // Avoid starvation of telemetry
sem.take_nonblocking()) { // Is the other threads busy with fwupload data?
// Send DFU packet
packetFormatDfu* tx = &beken.pktDataDfu;
if (fwupload.sent > fwupload.acked) {
// Resend the last tx packet until it is acknowledged
DebugPrintf(4, "resend %u %u %u\r\n", fwupload.added, fwupload.sent, fwupload.acked);
} else if (fwupload.pending_length() >= SZ_DFU) { // safety check
// Send firmware update packet
uint16_t addr = fwupload.sent;
tx->address_lo = addr & 0xff;
tx->address_hi = (addr >> 8);
fwupload.dequeue(&tx->data[0], SZ_DFU); // (updated sent, pending_tail)
DebugPrintf(4, "send %u %u %u\r\n", fwupload.added, fwupload.sent, fwupload.acked);
if (fwupload.fw_type == TELEM_PLAY) {
tx->packetType = BK_PKT_TYPE_TUNE;
} else if (fwupload.fw_type == TELEM_FW) {
tx->packetType = BK_PKT_TYPE_DFU;
if (fwupload.free_length() > 96) {
fwupload.need_ack = true; // Request a new mavlink packet
}
}
}
sem.give();
return true;
} else {
// Send telemetry packet
packetFormatTx* tx = &beken.pktDataTx;
update_SRT_telemetry();
tx->packetType = BK_PKT_TYPE_TELEMETRY; ///< The packet type
tx->pps = t_status.pps;
tx->flags = t_status.flags;
tx->droneid[0] = myDroneId[0];
tx->droneid[1] = myDroneId[1];
tx->droneid[2] = myDroneId[2];
tx->droneid[3] = myDroneId[3];
tx->flight_mode = t_status.flight_mode;
tx->wifi = t_status.wifi_chan + (24 * t_status.tx_max);
tx->note_adjust = t_status.note_adjust;
// CPM bodge - use "Radio Protocol>0" to mean "Adaptive Frequency hopping disabled"
// This should move to a different parameter.
// Also the thresholds for swapping should move to be parameters.
if (get_protocol()) {
tx->hopping = 0; // Adaptive frequency hopping disabled
} else {
tx->hopping = adaptive.hopping; // Tell the tx what we want to use
}
telem_send_count++;
return false;
}
}
// ----------------------------------------------------------------------------
// When (most of) a 92 byte packet has been sent to the Tx, ask for another one
// called from main thread
void AP_Radio_beken::check_fw_ack(void)
{
if (fwupload.need_ack && sem.take_nonblocking()) {
// ack the send of a DATA96 fw packet to TX
if (fwupload.added < fwupload.file_length) {
fwupload.need_ack = false;
uint8_t data16[16] {};
uint32_t ack_to = fwupload.added;
memcpy(&data16[0], &ack_to, 4); // Assume endianness matches
mavlink_msg_data16_send(fwupload.chan, 42, 4, data16);
} else if (fwupload.added & 0x7f) { // Are we on a boundary
// Pad out some bytes at the end
uint8_t data16[16];
memset(&data16[0], 0, sizeof(data16));
if (fwupload.free_length() > 16) {
fwupload.queue(&data16[0], 16-(fwupload.added & 15));
}
DebugPrintf(4, "Pad to %d\r\n", fwupload.added);
} else if (fwupload.acked < fwupload.added) {
// Keep sending to the tx until it is acked
DebugPrintf(4, "PadResend %u %u %u\r\n", fwupload.added, fwupload.sent, fwupload.acked);
} else {
fwupload.need_ack = false; // All done
DebugPrintf(3, "StopUpload\r\n");
uint8_t data16[16] {};
uint32_t ack_to = fwupload.file_length; // Finished
memcpy(&data16[0], &ack_to, 4); // Assume endianness matches
mavlink_msg_data16_send(fwupload.chan, 42, 4, data16);
}
sem.give();
}
}
// ----------------------------------------------------------------------------
/* support all 4 rc input modes by swapping channels. */
void AP_Radio_beken::map_stick_mode(void)
{
switch (get_stick_mode()) {
case 1: {
// mode1 = swap throttle and pitch
uint16_t tmp = pwm_channels[1];
pwm_channels[1] = pwm_channels[2];
pwm_channels[2] = tmp;
break;
}
case 3: {
// mode3 = swap throttle and pitch, swap roll and yaw
uint16_t tmp = pwm_channels[1];
pwm_channels[1] = pwm_channels[2];
pwm_channels[2] = tmp;
tmp = pwm_channels[0];
pwm_channels[0] = pwm_channels[3];
pwm_channels[3] = tmp;
break;
}
case 4: {
// mode4 = swap roll and yaw
uint16_t tmp = pwm_channels[0];
pwm_channels[0] = pwm_channels[3];
pwm_channels[3] = tmp;
break;
}
case 2:
default:
// nothing to do, transmitter is natively mode2
break;
}
// reverse pitch input to match ArduPilot default
pwm_channels[1] = 3000 - pwm_channels[1];
}
// ----------------------------------------------------------------------------
// This is a valid manual/auto binding packet.
// The type of binding is valid now, and it came with the right address.
// Lets check to see if it wants to be for another drone though
// Return 1 on double binding
uint8_t AP_Radio_beken::ProcessBindPacket(const packetFormatRx * rx)
{
// Did the tx pick a drone yet?
uint32_t did = ((uint32_t)rx->u.bind.droneid[0]) | ((uint32_t)rx->u.bind.droneid[1] << 8)
| ((uint32_t)rx->u.bind.droneid[2] << 16) | ((uint32_t)rx->u.bind.droneid[3] << 24);
uint32_t mid = ((uint32_t)myDroneId[0]) | ((uint32_t)myDroneId[1] << 8)
| ((uint32_t)myDroneId[2] << 16) | ((uint32_t)myDroneId[3] << 24);
if (did & 0xff) { // If the first byte is zero, the drone id is not set (compatibility with old tx code)
// Is it me or someone else?
if (did != mid) {
// This tx is not for us!
if (!valid_connection && !already_bound) {
// Keep searching!
Debug(1, "WrongDroneId: %08lx vs %08lx\n", did, mid);
BadDroneId();
return 1;
}
}
}
// Set the address on which we are receiving the control data
syncch.SetChannel(rx->channel); // Can be factory test channels if wanted
if (get_factory_test() == 0) { // Final check that we are not in factory mode
adaptive.Invalidate();
syncch.SetHopping(0, rx->u.bind.hopping);
beken.SetAddresses(&rx->u.bind.bind_address[0]);
Debug(1, " Bound to %x %x %x %x %x\r\n", rx->u.bind.bind_address[0],
rx->u.bind.bind_address[1], rx->u.bind.bind_address[2],
rx->u.bind.bind_address[3], rx->u.bind.bind_address[4]);
save_bind_info(); // May take some time
}
return 0;
}
// ----------------------------------------------------------------------------
// Handle receiving a packet (we are still in an interrupt!)
// Return 1 if we want to stay on the current radio frequency instead of hopping (double binding)
uint8_t AP_Radio_beken::ProcessPacket(const uint8_t* packet, uint8_t rxaddr)
{
uint8_t result = 0;
const packetFormatRx * rx = (const packetFormatRx *) packet; // Interpret the packet data
switch (rx->packetType) {
case BK_PKT_TYPE_CTRL_FOUND:
case BK_PKT_TYPE_CTRL_LOST:
// We haz data
if (rxaddr == 0) {
syncch.SetChannelIfSafe(rx->channel);
synctm.packet_timer = AP_HAL::micros(); // This is essential for letting the channels update
if (!already_bound) {
already_bound = true; // Do not autobind to a different tx unless we power off
// test rssi beken.EnableCarrierDetect(false); // Save 1ma of power
beken.WriteReg(BK_WRITE_REG|BK_EN_RXADDR, 0x01); // Ignore the binding channel, which might be from competing siren txs.
}
adaptive.Get(rx->channel); // Give the good news to the adaptive logic
// Put the data into the control values (assuming mode2)
pwm_channels[0] = 1000 + rx->u.ctrl.roll + (uint16_t(rx->u.ctrl.msb & 0xC0) << 2); // Roll
pwm_channels[1] = 1000 + rx->u.ctrl.pitch + (uint16_t(rx->u.ctrl.msb & 0x30) << 4); // Pitch
pwm_channels[2] = 1000 + rx->u.ctrl.throttle + (uint16_t(rx->u.ctrl.msb & 0x0C) << 6); // Throttle
pwm_channels[3] = 1000 + rx->u.ctrl.yaw + (uint16_t(rx->u.ctrl.msb & 0x03) << 8); // Yaw
pwm_channels[4] = 1000 + ((rx->u.ctrl.buttons_held & 0x07) >> 0) * 100; // SW1, SW2, SW3
pwm_channels[5] = 1000 + ((rx->u.ctrl.buttons_held & 0x38) >> 3) * 100; // SW4, SW5, SW6
// cope with mode1/mode2/mode3/mode4
map_stick_mode();
chan_count = MAX(chan_count, 7);
switch (rx->u.ctrl.data_type) {
case BK_INFO_FW_VER: break;
case BK_INFO_DFU_RX: {
uint16_t ofs = rx->u.ctrl.data_value_hi;
ofs <<= 8;
ofs |= rx->u.ctrl.data_value_lo;
if (ofs == fwupload.acked + SZ_DFU) {
fwupload.acked = ofs;
}
if ((ofs == fwupload.acked) && (ofs > 0)) {
fwupload.rx_ack = true;
}
if ((ofs == 0) && fwupload.rx_reboot) {
fwupload.reset();
}
}
break;
case BK_INFO_FW_CRC_LO:
break;
case BK_INFO_FW_CRC_HI:
break;
case BK_INFO_FW_YM:
tx_date.firmware_year = rx->u.ctrl.data_value_hi;
tx_date.firmware_month = rx->u.ctrl.data_value_lo;
break;
case BK_INFO_FW_DAY:
tx_date.firmware_day = rx->u.ctrl.data_value_hi;
break;
case BK_INFO_MODEL:
break;
case BK_INFO_PPS:
tx_pps = rx->u.ctrl.data_value_lo; // Remember pps from tx
if (!have_tx_pps) {
have_tx_pps = 2;
if (tx_pps == 0) { // Has the tx not been receiving telemetry from someone else recently?
valid_connection = true;
} else {
// the TX has received more telemetry packets in the last second
// than we have ever sent. There must be another RX sending
// telemetry packets. We will reset our mfg_id and go back waiting
// for a new bind packet, hopefully with the right TX
Debug(1, "Double-bind detected via PPS %d\n", (int) tx_pps);
BadDroneId();
result = 1;
}
} else {
have_tx_pps = 2;
}
break;
case BK_INFO_BATTERY:
// "voltage from TX is in 0.025 volt units". Convert to 0.01 volt units for easier display
// The CC2500 code (and this) actually assumes it is in 0.04 volt units, hence the tx scaling by 23/156 (38/256) instead of 60/256)
// Which means a maximum value is 152 units representing 6.0v rather than 240 units representing 6.0v
pwm_channels[6] = rx->u.ctrl.data_value_lo * 4;
break;
case BK_INFO_COUNTDOWN:
if (get_factory_test() == 0) {
if (rx->u.ctrl.data_value_lo) {
syncch.SetCountdown(rx->u.ctrl.data_value_lo+1, rx->u.ctrl.data_value_hi);
adaptive.Invalidate();
DebugPrintf(2, "(%d) ", rx->u.ctrl.data_value_lo);
}
}
break;
case BK_INFO_HOPPING0:
if (get_factory_test() == 0) {
syncch.SetHopping(rx->u.ctrl.data_value_lo, rx->u.ctrl.data_value_hi);
// DebugPrintf(2, "[%d] ", rx->u.ctrl.data_value_lo);
}
break;
case BK_INFO_HOPPING1: // Ignored so far
break;
case BK_INFO_DRONEID0: // Does this Tx even want to talk to me?
if (rx->u.ctrl.data_value_lo || rx->u.ctrl.data_value_hi) {
if ((rx->u.ctrl.data_value_lo != myDroneId[0]) ||
(rx->u.ctrl.data_value_hi != myDroneId[1])) {
Debug(1, "Bad DroneID0 %02x %02x\n", rx->u.ctrl.data_value_lo, rx->u.ctrl.data_value_hi);
BadDroneId(); // Bad drone id - disconnect from this tx
result = 1;
}
}
break;
case BK_INFO_DRONEID1: // Does this Tx even want to talk to me?
if (rx->u.ctrl.data_value_lo || rx->u.ctrl.data_value_hi) {
if ((rx->u.ctrl.data_value_lo != myDroneId[2]) ||
(rx->u.ctrl.data_value_hi != myDroneId[3])) {
Debug(1, "Bad DroneID1 %02x %02x\n", rx->u.ctrl.data_value_lo, rx->u.ctrl.data_value_hi);
BadDroneId(); // Bad drone id - disconnect from this tx
result = 1;
}
}
break;
default:
break;
};
}
break;
case BK_PKT_TYPE_BIND_AUTO:
if (rxaddr == 1) {
if (get_autobind_rssi() > BK_RSSI_DEFAULT) { // Have we disabled autobind using fake RSSI parameter?
Debug(2, "X0");
break;
}
if (get_autobind_time() == 0) { // Have we disabled autobind using zero time parameter?
Debug(2, "X1");
break;
}
if (already_bound) { // Do not auto-bind (i.e. to another tx) until we reboot.
Debug(2, "X2");
break;
}
uint32_t now = AP_HAL::millis();
if (now < get_autobind_time() * 1000) { // Is this too soon from rebooting/powering up to autobind?
Debug(2, "X3");
break;
}
// Check the carrier detect to see if the drone is too far away to auto-bind
if (!beken.CarrierDetect()) {
Debug(2, "X4");
break;
}
result = ProcessBindPacket(rx);
}
break;
case BK_PKT_TYPE_BIND_MANUAL: // Sent by the tx for a few seconds after power-up when a button is held down
if (rxaddr == 1) {
if (bind_time_ms == 0) { // We have never receiving a binding click
Debug(2, "X5");
break; // Do not bind
}
if (already_bound) { // Do not manually-bind (i.e. to another tx) until we reboot.
Debug(2, "X6");
break;
}
// if (uint32_t(AP_HAL::millis() - bind_time_ms) > 1000ul * 60u) // Have we pressed the button to bind recently? One minute timeout
// break; // Do not bind
result = ProcessBindPacket(rx);
}
break;
case BK_PKT_TYPE_TELEMETRY:
case BK_PKT_TYPE_DFU:
default:
// This is one of our packets! Ignore it.
break;
}
return result;
}
// ----------------------------------------------------------------------------
// Prepare to send a FCC packet
void AP_Radio_beken::UpdateFccScan(void)
{
// Support scan mode
if (beken.fcc.scan_mode) {
beken.fcc.scan_count++;
if (beken.fcc.scan_count >= 200) {
beken.fcc.scan_count = 0;
beken.fcc.channel += 2; // Go up by 2Mhz
if (beken.fcc.channel >= CHANNEL_FCC_HIGH) {
beken.fcc.channel = CHANNEL_FCC_LOW;
}
}
}
}
// ----------------------------------------------------------------------------
// main IRQ handler
void AP_Radio_beken::irq_handler(uint32_t when)
{
if (beken.fcc.fcc_mode) {
// don't process interrupts in FCCTEST mode
beken.WriteReg(BK_WRITE_REG | BK_STATUS,
(BK_STATUS_RX_DR | BK_STATUS_TX_DS | BK_STATUS_MAX_RT)); // clear RX_DR or TX_DS or MAX_RT interrupt flag
return;
}
// Determine which state fired the interrupt
bool bNext = false;
bool bRx = false;
uint8_t bk_sta = beken.ReadStatus();
if (bk_sta & BK_STATUS_TX_DS) {
DEBUG1_LOW();
DEBUG1_HIGH();
DEBUG1_LOW();
DEBUG1_HIGH();
DEBUG1_LOW();
DEBUG1_HIGH();
// Packet was sent towards the Tx board
synctm.tx_time_us = when;
beken.SwitchToIdleMode();
if (beken.fcc.disable_crc_mode && !beken.fcc.disable_crc) {
beken.SetCrcMode(true);
}
bNext = bRx = true;
}
if (bk_sta & BK_STATUS_MAX_RT) {
// We have had a "max retries" error
}
bool bReply = false;
if (bk_sta & BK_STATUS_RX_DR) {
DEBUG1_LOW();
DEBUG1_HIGH();
DEBUG1_LOW();
DEBUG1_HIGH();
// We have received a packet
uint8_t rxstd = 0;
// Which pipe (address) have we received this packet on?
if ((bk_sta & BK_STATUS_RX_MASK) == BK_STATUS_RX_P_0) {
rxstd = 0;
} else if ((bk_sta & BK_STATUS_RX_MASK) == BK_STATUS_RX_P_1) {
rxstd = 1;
} else {
stats.recv_errors++;
}
bNext = true;
uint8_t len, fifo_sta;
uint8_t packet[32];
do {
stats.recv_packets++;
len = beken.ReadReg(BK_R_RX_PL_WID_CMD); // read received packet length in bytes
if (len <= PACKET_LENGTH_RX_MAX) {
bReply = true;
synctm.Rx(when);
// printf("R%d ", when - next_switch_us);
next_switch_us = when + synctm.sync_time_us + 1500; // Switch channels if we miss the next packet
// This includes short packets (e.g. where no telemetry was sent)
beken.ReadRegisterMulti(BK_RD_RX_PLOAD, packet, len); // read receive payload from RX_FIFO buffer
// DebugPrintf(3, "Packet %d(%d) %d %d %d %d %d %d %d %d ...\r\n", rxstd, len,
// packet[0], packet[1], packet[2], packet[3], packet[4], packet[5], packet[6], packet[7]);
} else { // Packet was too long
beken.ReadRegisterMulti(BK_RD_RX_PLOAD, packet, 32); // read receive payload from RX_FIFO buffer
beken.Strobe(BK_FLUSH_RX); // flush Rx
}
fifo_sta = beken.ReadReg(BK_FIFO_STATUS); // read register FIFO_STATUS's value
} while (!(fifo_sta & BK_FIFO_STATUS_RX_EMPTY)); // while not empty
beken.WriteReg(BK_WRITE_REG | BK_STATUS,
(BK_STATUS_RX_DR | BK_STATUS_TX_DS | BK_STATUS_MAX_RT)); // clear RX_DR or TX_DS or MAX_RT interrupt flag
if (1 == ProcessPacket(packet, rxstd)) {
bNext = false; // Because double binding detected
}
if (beken.fcc.enable_cd) {
beken.fcc.last_cd = beken.CarrierDetect(); // Detect if close or not
} else {
beken.fcc.last_cd = true; // Assumed to be close
}
}
// Clear the bits
beken.WriteReg((BK_WRITE_REG|BK_STATUS), (BK_STATUS_MAX_RT | BK_STATUS_TX_DS | BK_STATUS_RX_DR));
if (bReply) {
uint32_t now = AP_HAL::micros();
uint32_t delta = chTimeUS2I(800 + next_switch_us - now); // Do not use US2ST since that will overflow 32 bits
chSysLock();
chVTResetI(&timeout_vt); // Stop the normal timeout
chVTSetI(&timeout_vt, delta, trigger_timeout_event, nullptr); // Timeout after 7ms
chSysUnlock();
if (get_telem_enable() && have_tx_pps) { // Note that the user can disable telemetry, but the transmitter will be less functional in this case.
bNext = bRx = false;
// Send the telemetry reply to the controller
beken.Strobe(BK_FLUSH_TX); // flush Tx
beken.ClearAckOverflow();
bool txDfu = UpdateTxData();
if (txDfu) {
beken.pktDataDfu.channel = syncch.channel;
} else {
beken.pktDataTx.channel = syncch.channel;
}
if (beken.fcc.disable_crc_mode) {
// Only disable the CRC on reception, not transmission, so the connection remains.
beken.SwitchToIdleMode();
beken.SetCrcMode(false);
}
beken.SwitchToTxMode();
DEBUG1_LOW();
hal.scheduler->delay_microseconds(200); // delay to give the (remote) tx a chance to switch to receive mode
DEBUG1_HIGH();
if (txDfu) {
beken.SendPacket(BK_W_TX_PAYLOAD_NOACK_CMD, (uint8_t *)&beken.pktDataDfu, PACKET_LENGTH_TX_DFU);
} else {
beken.SendPacket(BK_W_TX_PAYLOAD_NOACK_CMD, (uint8_t *)&beken.pktDataTx, PACKET_LENGTH_TX_TELEMETRY);
}
} else { // Try to still work when telemetry is disabled
bNext = true;
}
}
if (bNext) {
nextChannel(1);
}
if (bRx) {
beken.SwitchToRxMode(); // Prepare to receive next packet (on the next channel)
}
}
// ----------------------------------------------------------------------------
// handle timeout IRQ (called when we need to switch channels)
void AP_Radio_beken::irq_timeout(uint32_t when)
{
DEBUG1_LOW();
DEBUG1_HIGH();
DEBUG1_LOW();
DEBUG1_HIGH();
DEBUG1_LOW();
DEBUG1_HIGH();
DEBUG1_LOW();
DEBUG1_HIGH();
DEBUG1_LOW();
DEBUG1_HIGH();
if (beken.bkReady) { // We are not reinitialising the chip in the main thread
static uint8_t check_params_timer = 0;
if (++check_params_timer >= 10) { // We don't need to test the parameter logic every ms.
// Every 50ms get here
bool bOldReady = beken.bkReady;
beken.bkReady = false;
check_params_timer = 0;
// Set the transmission power
uint8_t pwr = get_transmit_power(); // 1..8
if (pwr != beken.fcc.power + 1) {
if ((pwr > 0) && (pwr <= 8)) {
beken.SwitchToIdleMode();
beken.SetPower(pwr-1); // (this will set beken.fcc.power)
}
}
// Set CRC mode
uint8_t crc = get_disable_crc();
if (crc != beken.fcc.disable_crc_mode) {
beken.SwitchToIdleMode();
beken.SetCrcMode(crc);
beken.fcc.disable_crc_mode = crc;
}
// Do we need to change our factory test mode?
uint8_t factory = get_factory_test();
if (factory != beken.fcc.factory_mode) {
beken.SwitchToIdleMode();
// Set frequency
syncch.channel = factory ? (factory-1) + CHANNEL_COUNT_LOGICAL*CHANNEL_NUM_TABLES : 0;
// Set address
beken.SetFactoryMode(factory);
}
// Do we need to change our fcc test mode status?
uint8_t fcc = get_fcc_test();
if (fcc != beken.fcc.fcc_mode) {
beken.Strobe(BK_FLUSH_TX);
if (fcc == 0) { // Turn off fcc test mode
if (beken.fcc.CW_mode) {
beken.SwitchToIdleMode();
beken.SetCwMode(false);
}
} else {
if (fcc > 3) {
if (!beken.fcc.CW_mode) {
beken.SwitchToIdleMode();
beken.SetCwMode(true);
beken.DumpRegisters();
}
} else {
if (beken.fcc.CW_mode) {
beken.SwitchToIdleMode();
beken.SetCwMode(false);
}
}
switch (fcc) {
case 1: case 4:
default:
beken.fcc.channel = CHANNEL_FCC_LOW;
break;
case 2: case 5:
beken.fcc.channel = CHANNEL_FCC_MID;
break;
case 3: case 6:
beken.fcc.channel = CHANNEL_FCC_HIGH;
break;
};
}
beken.fcc.fcc_mode = fcc;
DebugPrintf(1, "\r\nFCC mode %d\r\n", fcc);
}
beken.bkReady = bOldReady;
}
// For fcc mode, just send packets on timeouts (every 5ms)
if (beken.fcc.fcc_mode) {
beken.SwitchToTxMode();
beken.ClearAckOverflow();
UpdateFccScan();
beken.SetChannel(beken.fcc.channel);
UpdateTxData();
beken.pktDataTx.channel = 0;
if (!beken.fcc.CW_mode) {
beken.SendPacket(BK_WR_TX_PLOAD, (uint8_t *)&beken.pktDataTx, PACKET_LENGTH_TX_TELEMETRY);
}
} else {
// Normal modes - we have timed out for channel hopping
int32_t d = synctm.sync_time_us; // Time between packets, e.g. 5100 us
uint32_t dt = when - synctm.rx_time_us;
if (dt > 50*d) { // We have lost sync (missed 50 packets) so slow down the channel hopping until we resync
d *= 5; // 3 or 5 are relatively prime to the table size of 16.
DebugPrintf(2, "C");
if (dt > 120*d) { // We have missed 3 seconds - try the safe WiFi table
DebugPrintf(2, "S");
syncch.SafeTable();
}
} else {
// DebugPrintf(2, "c%d ", AP_HAL::micros() - next_switch_us);
DebugPrintf(2, "c");
adaptive.Miss(syncch.channel);
}
{
uint8_t fifo_sta = radio_singleton->beken.ReadReg(BK_FIFO_STATUS); // read register FIFO_STATUS's value
if (!(fifo_sta & BK_FIFO_STATUS_RX_EMPTY)) { // while not empty
DEBUG1_LOW();
DEBUG1_HIGH();
DebugPrintf(2, "#"); // We have received a packet, but the interrupt was not triggered!
radio_singleton->irq_handler(next_switch_us); // Use this broken time
DEBUG1_LOW();
DEBUG1_HIGH();
} else {
next_switch_us += d; // Switch channels if we miss the next packet
}
}
int32_t ss = int32_t(next_switch_us - when);
if (ss < 1000) { // Not enough time
next_switch_us = when + d; // Switch channels if we miss the next packet
DebugPrintf(2, "j");
}
beken.SwitchToIdleMode();
nextChannel(1); // Switch to the next channel
beken.SwitchToRxMode();
beken.ClearAckOverflow();
}
}
// Ask for another timeout
uint32_t now = AP_HAL::micros();
if (int32_t(next_switch_us - when) < 300) { // Too late for that one
next_switch_us = now + synctm.sync_time_us;
}
if (int32_t(next_switch_us - now) < 250) { // Too late for this one
next_switch_us = now + synctm.sync_time_us;
}
uint32_t delta = chTimeUS2I(next_switch_us - now); // Do not use US2ST since that will overflow 32 bits.
chSysLock();
chVTSetI(&timeout_vt, delta, trigger_timeout_event, nullptr); // Timeout every 5 ms
chSysUnlock();
}
// ----------------------------------------------------------------------------
// Thread that supports Beken Radio work triggered by interrupts
// This is the only thread that should access the Beken radio chip via SPI.
void AP_Radio_beken::irq_handler_thd(void *arg)
{
(void) arg;
while (true) {
DEBUG1_LOW();
eventmask_t evt = chEvtWaitAny(ALL_EVENTS);
DEBUG1_HIGH();
if (_irq_handler_ctx != nullptr) { // Sanity check
_irq_handler_ctx->name = "RadioBeken"; // Only useful to be done once but here is done often
}
radio_singleton->beken.lock_bus();
switch (evt) {
case EVT_IRQ:
if (radio_singleton->beken.fcc.fcc_mode != 0) {
DebugPrintf(3, "IRQ FCC\n");
}
radio_singleton->irq_handler(isr_irq_time_us);
break;
case EVT_TIMEOUT:
radio_singleton->irq_timeout(isr_timeout_time_us);
break;
case EVT_BIND: // The user has clicked on the "Start Bind" button on the web interface
DebugPrintf(2, "\r\nBtnStartBind\r\n");
break;
default:
break;
}
radio_singleton->beken.unlock_bus();
}
}
void AP_Radio_beken::setChannel(uint8_t channel)
{
beken.SetChannel(channel);
}
const uint8_t bindHopData[256] = {
#if 0 // Support single frequency mode (no channel hopping)
// Normal frequencies
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Normal
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 1,2,3,4,5
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 6
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 7
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 8
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 9,10,11
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Test mode channels
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Reserved
// Alternative frequencies
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Normal
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 1,2,3,4,5
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 6
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 7
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 8
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Wifi channel 9,10,11
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Test mode channels
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, // Reserved
#else // Frequency hopping
// Normal frequencies
47,21,31,52,36,13,72,41, 69,56,16,26,61,10,45,66, // Normal
57,62,67,72,58,63,68,59, 64,69,60,65,70,61,66,71, // Wifi channel 1,2,3,4,5 (2457..2472MHz)
62,10,67,72,63,68,11,64, 69,60,65,70,12,61,66,71, // Wifi channel 6
10,67,11,72,12,68,13,69, 14,65,15,70,16,66,17,71, // Wifi channel 7
10,70,15,20,14,71,16,21, 12,17,22,72,13,18,11,19, // Wifi channel 8
10,15,20,25,11,16,21,12, 17,22,13,18,23,14,19,24, // Wifi channel 9,10,11
46,41,31,52,36,13,72,69, 21,56,16,26,61,66,10,43, // Test mode channels
46,41,31,52,36,13,72,69, 21,56,16,26,61,66,10,43, // Reserved
// Alternative frequencies
17,11,63,19,67,44,43,38, 50,54,70,58,29,35,25,14, // Normal
18,10,23,21,33,44,41,38, 52,45,47,25,30,35,49,14, // Wifi channel 1,2,3,4,5
18,56,23,21,33,44,41,38, 52,45,47,25,30,35,49,14, // Wifi channel 6
18,56,23,21,33,44,41,38, 52,45,47,25,30,35,49,61, // Wifi channel 7
68,56,24,53,33,44,41,38, 28,45,47,65,30,35,49,61, // Wifi channel 8
68,56,72,53,33,44,41,38, 28,45,47,65,30,35,49,61, // Wifi channel 9,10,11
46,41,31,52,36,13,72,69, 21,56,16,26,61,66,10,43, // Test mode channels (as normal)
46,41,31,52,36,13,72,69, 21,56,16,26,61,66,10,43, // Reserved (as normal)
#endif
};
void AP_Radio_beken::nextChannel(uint8_t skip)
{
if (skip) {
syncch.NextChannel();
}
setChannel(bindHopData[syncch.channel]);
}
/*
save bind info
*/
void AP_Radio_beken::save_bind_info(void)
{
// access to storage for bind information
StorageAccess bind_storage(StorageManager::StorageBindInfo);
struct bind_info info;
info.magic = bind_magic;
info.bindTxId[0] = beken.TX_Address[0];
info.bindTxId[1] = beken.TX_Address[1];
info.bindTxId[2] = beken.TX_Address[2];
info.bindTxId[3] = beken.TX_Address[3];
info.bindTxId[4] = beken.TX_Address[4];
bind_storage.write_block(0, &info, sizeof(info));
}
/*
load bind info
*/
bool AP_Radio_beken::load_bind_info(void)
{
// access to storage for bind information
StorageAccess bind_storage(StorageManager::StorageBindInfo);
struct bind_info info;
if (!bind_storage.read_block(&info, 0, sizeof(info)) || info.magic != bind_magic) {
return false;
}
beken.SetAddresses(&info.bindTxId[0]);
return true;
}
// ----------------------------------------------------------------------------
void AP_Radio_beken::BadDroneId(void)
{
if (stats.recv_packets >= 1000) { // We are already chatting to this TX for some time.
return; // Do not disconnect from it.
}
// clear the current bind information
valid_connection = false;
// with luck we will connect to another tx
beken.SwitchToIdleMode();
beken.SetFactoryMode(0); // Reset the tx address
adaptive.Invalidate();
syncch.SetHopping(0,0);
already_bound = false; // Not already solidly bound to a drone
stats.recv_packets = 0;
beken.WriteReg(BK_WRITE_REG|BK_EN_RXADDR, 0x02);
have_tx_pps = false;
}
// ----------------------------------------------------------------------------
// Which bits correspond to each channel within a table, for adaptive frequencies
static const uint8_t channel_bit_table[CHANNEL_COUNT_LOGICAL] = {
0x01, 0, 0x02, 0, 0x04, 0, 0x08, 0,
0x10, 0, 0x20, 0, 0x40, 0, 0x80, 0
};
// Step through the channels
void SyncChannel::NextChannel(void)
{
channel &= 0x7f;
if (channel >= CHANNEL_COUNT_LOGICAL*CHANNEL_NUM_TABLES) {
// We are in the factory test modes. Keep the channel as is.
} else {
if (countdown != countdown_invalid) {
if (--countdown == 0) {
channel = countdown_chan;
countdown = countdown_invalid;
hopping_current = hopping_wanted = 0;
return;
}
} else if (hopping_countdown != countdown_invalid) {
if (--hopping_countdown == 0) {
hopping_current = hopping_wanted;
hopping_countdown = countdown_invalid;
// printf("{Use %d} ", hopping_current);
}
}
uint8_t table = channel / CHANNEL_COUNT_LOGICAL;
channel = (channel + 1) % CHANNEL_COUNT_LOGICAL;
channel += table * CHANNEL_COUNT_LOGICAL;
// Support adaptive frequency hopping
if (hopping_current & channel_bit_table[channel % CHANNEL_COUNT_LOGICAL]) {
channel |= 0x80;
}
}
}
// If we have not received any packets for ages, try a WiFi table that covers all frequencies
void SyncChannel::SafeTable(void)
{
channel &= 0x7f;
if (channel >= CHANNEL_COUNT_LOGICAL*CHANNEL_NUM_TABLES) {
// We are in the factory test modes. Reset to default table.
channel = 0;
} else {
uint8_t table = channel / CHANNEL_COUNT_LOGICAL;
if ((table != CHANNEL_BASE_TABLE) && (table != CHANNEL_SAFE_TABLE)) { // Are we using a table that is high end or low end only?
channel %= CHANNEL_COUNT_LOGICAL;
channel += CHANNEL_SAFE_TABLE * CHANNEL_COUNT_LOGICAL;
}
}
}
// Check if valid channel index; we have received a packet describing the current channel index
void SyncChannel::SetChannelIfSafe(uint8_t chan)
{
if (channel != chan) {
DebugPrintf(2, "{{%d}} ", chan);
}
chan &= 0x7f; // Disregard hopping
if (chan >= CHANNEL_COUNT_LOGICAL*CHANNEL_NUM_TABLES) {
if (chan == lastchan) {
channel = chan; // Allow test mode channels if two in a row
} else {
chan = 0; // Disallow test mode tables unless followed by each other
}
lastchan = chan;
} else {
lastchan = 0;
}
channel = chan;
}
// We have received a packet on this channel
void SyncAdaptive::Get(uint8_t channel)
{
uint8_t f = bindHopData[channel];
rx[f]++;
}
enum { ADAPT_THRESHOLD = 50 }; // Missed packets threshold for adapting the hopping
// We have missed a packet on this channel. Consider adapting.
void SyncAdaptive::Miss(uint8_t channel)
{
uint8_t f1 = bindHopData[channel];
missed[f1]++;
uint8_t f2 = bindHopData[channel ^ 0x80];
int32_t delta1 = missed[f1] - rx[f1];
int32_t delta2 = missed[f2] - rx[f2];
if ((delta1 > ADAPT_THRESHOLD) && // Worse than 50% reception on this channel
(delta1 > delta2)) {
// Ok consider swapping this channel
uint8_t bit = channel_bit_table[channel % CHANNEL_COUNT_LOGICAL];
if (bit) { // Is an even packet
uint8_t oh = hopping;
if (channel & 0x80) { // Swap back from alternative
hopping &= ~bit;
} else { // Swap to alternative
hopping |= bit;
}
if (hopping != oh) { // Have we changed?
missed[f2] = rx[f2] = 0; // Reset the values
// printf("{%d->%d:%d} ", f1+2400, f2+2400, hopping);
}
}
}
}
#endif // AP_RADIO_BK2425_ENABLED