ardupilot/libraries/AP_Motors/AP_MotorsMulticopter.cpp

526 lines
20 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsMulticopter.cpp - ArduCopter multicopter motors library
* Code by Randy Mackay and Robert Lefebvre. DIYDrones.com
*
*/
#include "AP_MotorsMulticopter.h"
#include <AP_HAL/AP_HAL.h>
extern const AP_HAL::HAL& hal;
// parameters for the motor class
const AP_Param::GroupInfo AP_MotorsMulticopter::var_info[] = {
// 0 was used by TB_RATIO
// 1,2,3 were used by throttle curve
// @Param: SPIN_ARMED
// @DisplayName: Motors always spin when armed
// @Description: Controls whether motors always spin when armed (must be below THR_MIN)
// @Values: 0:Do Not Spin,70:VerySlow,100:Slow,130:Medium,150:Fast
// @User: Standard
AP_GROUPINFO("SPIN_ARMED", 5, AP_MotorsMulticopter, _spin_when_armed, AP_MOTORS_SPIN_WHEN_ARMED),
// @Param: YAW_HEADROOM
// @DisplayName: Matrix Yaw Min
// @Description: Yaw control is given at least this pwm range
// @Range: 0 500
// @Units: pwm
// @User: Advanced
AP_GROUPINFO("YAW_HEADROOM", 6, AP_MotorsMulticopter, _yaw_headroom, AP_MOTORS_YAW_HEADROOM_DEFAULT),
// 7 was THR_LOW_CMP
// @Param: THST_EXPO
// @DisplayName: Thrust Curve Expo
// @Description: Motor thrust curve exponent (from 0 for linear to 1.0 for second order curve)
// @Range: 0.25 0.8
// @User: Advanced
AP_GROUPINFO("THST_EXPO", 8, AP_MotorsMulticopter, _thrust_curve_expo, AP_MOTORS_THST_EXPO_DEFAULT),
// @Param: THST_MAX
// @DisplayName: Thrust Curve Max
// @Description: Point at which the thrust saturates
// @Values: 0.9:Low, 1.0:High
// @User: Advanced
AP_GROUPINFO("THST_MAX", 9, AP_MotorsMulticopter, _thrust_curve_max, AP_MOTORS_THST_MAX_DEFAULT),
// @Param: THST_BAT_MAX
// @DisplayName: Battery voltage compensation maximum voltage
// @Description: Battery voltage compensation maximum voltage (voltage above this will have no additional scaling effect on thrust). Recommend 4.4 * cell count, 0 = Disabled
// @Range: 6 35
// @Units: Volts
// @User: Advanced
AP_GROUPINFO("THST_BAT_MAX", 10, AP_MotorsMulticopter, _batt_voltage_max, AP_MOTORS_THST_BAT_MAX_DEFAULT),
// @Param: THST_BAT_MIN
// @DisplayName: Battery voltage compensation minimum voltage
// @Description: Battery voltage compensation minimum voltage (voltage below this will have no additional scaling effect on thrust). Recommend 3.5 * cell count, 0 = Disabled
// @Range: 6 35
// @Units: Volts
// @User: Advanced
AP_GROUPINFO("THST_BAT_MIN", 11, AP_MotorsMulticopter, _batt_voltage_min, AP_MOTORS_THST_BAT_MIN_DEFAULT),
// @Param: CURR_MAX
// @DisplayName: Motor Current Max
// @Description: Maximum current over which maximum throttle is limited (0 = Disabled)
// @Range: 0 200
// @Units: Amps
// @User: Advanced
AP_GROUPINFO("CURR_MAX", 12, AP_MotorsMulticopter, _batt_current_max, AP_MOTORS_CURR_MAX_DEFAULT),
// @Param: THR_MIX_MIN
// @DisplayName: Throttle Mix Minimum
// @Description: Throttle vs attitude control prioritisation used when landing (higher values mean we prioritise attitude control over throttle)
// @Range: 0.1 0.25
// @User: Advanced
AP_GROUPINFO("THR_MIX_MIN", 13, AP_MotorsMulticopter, _thr_mix_min, AP_MOTORS_THR_MIX_MIN_DEFAULT),
// @Param: THR_MIX_MAX
// @DisplayName: Throttle Mix Maximum
// @Description: Throttle vs attitude control prioritisation used during active flight (higher values mean we prioritise attitude control over throttle)
// @Range: 0.5 0.9
// @User: Advanced
AP_GROUPINFO("THR_MIX_MAX", 14, AP_MotorsMulticopter, _thr_mix_max, AP_MOTORS_THR_MIX_MAX_DEFAULT),
// @Param: PWM_TYPE
// @DisplayName: Output PWM type
// @Description: This selects the output PWM type, allowing for normal PWM continuous output or OneShot125
// @Values: 0:Normal,1:OneShot,2:OneShot125
// @User: Advanced
AP_GROUPINFO("PWM_TYPE", 15, AP_MotorsMulticopter, _pwm_type, PWM_TYPE_NORMAL),
AP_GROUPEND
};
// Constructor
AP_MotorsMulticopter::AP_MotorsMulticopter(uint16_t loop_rate, uint16_t speed_hz) :
AP_Motors(loop_rate, speed_hz),
_throttle_rpy_mix_desired(AP_MOTORS_THR_LOW_CMP_DEFAULT),
_throttle_rpy_mix(AP_MOTORS_THR_LOW_CMP_DEFAULT),
_min_throttle(AP_MOTORS_DEFAULT_MIN_THROTTLE),
_hover_out(AP_MOTORS_DEFAULT_MID_THROTTLE),
_throttle_radio_min(1100),
_throttle_radio_max(1900),
_batt_voltage_resting(0.0f),
_batt_current_resting(0.0f),
_batt_resistance(0.0f),
_batt_timer(0),
_lift_max(1.0f),
_throttle_limit(1.0f)
{
AP_Param::setup_object_defaults(this, var_info);
// disable all motors by default
memset(motor_enabled, false, sizeof(motor_enabled));
// setup battery voltage filtering
_batt_voltage_filt.set_cutoff_frequency(AP_MOTORS_BATT_VOLT_FILT_HZ);
_batt_voltage_filt.reset(1.0f);
};
// output - sends commands to the motors
void AP_MotorsMulticopter::output()
{
// update throttle filter
update_throttle_filter();
// update battery resistance
update_battery_resistance();
// calc filtered battery voltage and lift_max
update_lift_max_from_batt_voltage();
// run spool logic
output_logic();
// calculate thrust
output_armed_stabilizing();
// apply any thrust compensation for the frame
thrust_compensation();
// convert rpy_thrust values to pwm
output_to_motors();
};
// sends minimum values out to the motors
void AP_MotorsMulticopter::output_min()
{
set_desired_spool_state(DESIRED_SHUT_DOWN);
_multicopter_flags.spool_mode = SHUT_DOWN;
output();
}
// update the throttle input filter
void AP_MotorsMulticopter::update_throttle_filter()
{
if (armed()) {
_throttle_filter.apply(_throttle_in, 1.0f/_loop_rate);
// constrain filtered throttle
if (_throttle_filter.get() < 0.0f) {
_throttle_filter.reset(0.0f);
}
if (_throttle_filter.get() > 1.0f) {
_throttle_filter.reset(1.0f);
}
} else {
_throttle_filter.reset(0.0f);
}
}
// return current_limit as a number from 0 ~ 1 in the range throttle_min to throttle_max
//todo: replace this with a variable P term
float AP_MotorsMulticopter::get_current_limit_max_throttle()
{
// return maximum if current limiting is disabled
if (_batt_current_max <= 0) {
_throttle_limit = 1.0f;
return 1.0f;
}
// remove throttle limit if disarmed
if (!_flags.armed) {
_throttle_limit = 1.0f;
return 1.0f;
}
float batt_current_ratio = _batt_current/_batt_current_max;
_throttle_limit += AP_MOTORS_CURRENT_LIMIT_P*(1.0f - batt_current_ratio)/_loop_rate;
// throttle limit drops to 20% between hover and full throttle
_throttle_limit = constrain_float(_throttle_limit, 0.2f, 1.0f);
// limit max throttle
float throttle_thrust_hover = get_hover_throttle_as_high_end_pct();
return throttle_thrust_hover + ((1.0-throttle_thrust_hover)*_throttle_limit);
}
// apply_thrust_curve_and_volt_scaling - returns throttle in the range 0 ~ 1
float AP_MotorsMulticopter::apply_thrust_curve_and_volt_scaling(float thrust) const
{
float throttle_ratio = thrust;
// apply thrust curve - domain 0.0 to 1.0, range 0.0 to 1.0
if (_thrust_curve_expo > 0.0f && !is_zero(_batt_voltage_filt.get())){
throttle_ratio = ((_thrust_curve_expo-1.0f) + safe_sqrt((1.0f-_thrust_curve_expo)*(1.0f-_thrust_curve_expo) + 4.0f*_thrust_curve_expo*_lift_max*thrust))/(2.0f*_thrust_curve_expo*_batt_voltage_filt.get());
}
// scale to maximum thrust point
throttle_ratio *= _thrust_curve_max;
return constrain_float(throttle_ratio, 0.0f, _thrust_curve_max);
}
// update_lift_max from battery voltage - used for voltage compensation
void AP_MotorsMulticopter::update_lift_max_from_batt_voltage()
{
// sanity check battery_voltage_min is not too small
// if disabled or misconfigured exit immediately
if((_batt_voltage_max <= 0) || (_batt_voltage_min >= _batt_voltage_max) || (_batt_voltage < 0.25f*_batt_voltage_min)) {
_batt_voltage_filt.reset(1.0f);
_lift_max = 1.0f;
return;
}
_batt_voltage_min = MAX(_batt_voltage_min, _batt_voltage_max * 0.6f);
// add current based voltage sag to battery voltage
float batt_voltage = _batt_voltage + _batt_current * _batt_resistance;
batt_voltage = constrain_float(batt_voltage, _batt_voltage_min, _batt_voltage_max);
// filter at 0.5 Hz
float bvf = _batt_voltage_filt.apply(batt_voltage/_batt_voltage_max, 1.0f/_loop_rate);
// calculate lift max
_lift_max = bvf*(1-_thrust_curve_expo) + _thrust_curve_expo*bvf*bvf;
}
// update_battery_resistance - calculate battery resistance when throttle is above hover_out
void AP_MotorsMulticopter::update_battery_resistance()
{
// if disarmed reset resting voltage and current
if (!_flags.armed) {
_batt_voltage_resting = _batt_voltage;
_batt_current_resting = _batt_current;
_batt_timer = 0;
} else {
// update battery resistance when throttle is over hover throttle
if ((_batt_timer < 400) && ((_batt_current_resting*2.0f) < _batt_current)) {
if (get_throttle() >= _hover_out) {
// filter reaches 90% in 1/4 the test time
_batt_resistance += 0.05f*(( (_batt_voltage_resting-_batt_voltage)/(_batt_current-_batt_current_resting) ) - _batt_resistance);
_batt_timer += 1;
} else {
// initialize battery resistance to prevent change in resting voltage estimate
_batt_resistance = ((_batt_voltage_resting-_batt_voltage)/(_batt_current-_batt_current_resting));
}
}
}
}
// update_throttle_rpy_mix - slew set_throttle_rpy_mix to requested value
void AP_MotorsMulticopter::update_throttle_rpy_mix()
{
// slew _throttle_rpy_mix to _throttle_rpy_mix_desired
if (_throttle_rpy_mix < _throttle_rpy_mix_desired) {
// increase quickly (i.e. from 0.1 to 0.9 in 0.4 seconds)
_throttle_rpy_mix += MIN(2.0f/_loop_rate, _throttle_rpy_mix_desired-_throttle_rpy_mix);
} else if (_throttle_rpy_mix > _throttle_rpy_mix_desired) {
// reduce more slowly (from 0.9 to 0.1 in 1.6 seconds)
_throttle_rpy_mix -= MIN(0.5f/_loop_rate, _throttle_rpy_mix-_throttle_rpy_mix_desired);
}
_throttle_rpy_mix = constrain_float(_throttle_rpy_mix, 0.1f, 1.0f);
}
float AP_MotorsMulticopter::get_hover_throttle_as_high_end_pct() const
{
return (MAX(0,(float)_hover_out-_min_throttle) / (float)(1000-_min_throttle));
}
float AP_MotorsMulticopter::get_compensation_gain() const
{
// avoid divide by zero
if (_lift_max <= 0.0f) {
return 1.0f;
}
float ret = 1.0f / _lift_max;
#if AP_MOTORS_DENSITY_COMP == 1
// air density ratio is increasing in density / decreasing in altitude
if (_air_density_ratio > 0.3f && _air_density_ratio < 1.5f) {
ret *= 1.0f / constrain_float(_air_density_ratio,0.5f,1.25f);
}
#endif
return ret;
}
int16_t AP_MotorsMulticopter::calc_thrust_to_pwm(float thrust_in) const
{
return constrain_int16((_throttle_radio_min + _min_throttle + apply_thrust_curve_and_volt_scaling(thrust_in) *
( _throttle_radio_max - (_throttle_radio_min + _min_throttle))), _throttle_radio_min + _min_throttle, _throttle_radio_max);
}
// set_throttle_range - sets the minimum throttle that will be sent to the engines when they're not off (i.e. to prevents issues with some motors spinning and some not at very low throttle)
// also sets throttle channel minimum and maximum pwm
void AP_MotorsMulticopter::set_throttle_range(uint16_t min_throttle, int16_t radio_min, int16_t radio_max)
{
_throttle_radio_min = radio_min;
_throttle_radio_max = radio_max;
_min_throttle = (float)min_throttle * ((_throttle_radio_max - _throttle_radio_min) / 1000.0f);
}
void AP_MotorsMulticopter::output_logic()
{
// force desired and current spool mode if disarmed or not interlocked
if (!_flags.armed || !_flags.interlock) {
_spool_desired = DESIRED_SHUT_DOWN;
_multicopter_flags.spool_mode = SHUT_DOWN;
}
switch (_multicopter_flags.spool_mode) {
case SHUT_DOWN:
// Motors should be stationary.
// Servos set to their trim values or in a test condition.
// set limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = true;
// make sure the motors are spooling in the correct direction
if (_spool_desired != DESIRED_SHUT_DOWN) {
_multicopter_flags.spool_mode = SPIN_WHEN_ARMED;
break;
}
// set and increment ramp variables
_throttle_low_end_pct = 0.0f;
_throttle_thrust_max = 0.0f;
_throttle_rpy_mix = 0.0f;
_throttle_rpy_mix_desired = 0.0f;
break;
case SPIN_WHEN_ARMED: {
// Motors should be stationary or at spin when armed.
// Servos should be moving to correct the current attitude.
// set limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = true;
// set and increment ramp variables
float spool_step = 1.0f/(AP_MOTORS_SPOOL_UP_TIME*_loop_rate);
if (_spool_desired == DESIRED_SHUT_DOWN){
_throttle_low_end_pct -= spool_step;
// constrain ramp value and update mode
if (_throttle_low_end_pct <= 0.0f) {
_throttle_low_end_pct = 0.0f;
_multicopter_flags.spool_mode = SHUT_DOWN;
}
} else if(_spool_desired == DESIRED_THROTTLE_UNLIMITED) {
_throttle_low_end_pct += spool_step;
// constrain ramp value and update mode
if (_throttle_low_end_pct >= 1.0f) {
_throttle_low_end_pct = 1.0f;
_multicopter_flags.spool_mode = SPOOL_UP;
}
} else { // _spool_desired == SPIN_WHEN_ARMED
float spin_when_armed_low_end_pct = 0.0f;
if (_min_throttle > 0) {
spin_when_armed_low_end_pct = (float)_spin_when_armed / _min_throttle;
}
_throttle_low_end_pct += constrain_float(spin_when_armed_low_end_pct-_throttle_low_end_pct, -spool_step, spool_step);
}
_throttle_thrust_max = 0.0f;
_throttle_rpy_mix = 0.0f;
_throttle_rpy_mix_desired = 0.0f;
break;
}
case SPOOL_UP:
// Maximum throttle should move from minimum to maximum.
// Servos should exhibit normal flight behavior.
// initialize limits flags
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// make sure the motors are spooling in the correct direction
if (_spool_desired != DESIRED_THROTTLE_UNLIMITED ){
_multicopter_flags.spool_mode = SPOOL_DOWN;
break;
}
// set and increment ramp variables
_throttle_low_end_pct = 1.0f;
_throttle_thrust_max += 1.0f/(AP_MOTORS_SPOOL_UP_TIME*_loop_rate);
_throttle_rpy_mix = 0.0f;
_throttle_rpy_mix_desired = 0.0f;
// constrain ramp value and update mode
if (_throttle_thrust_max >= MIN(get_throttle(), get_current_limit_max_throttle())) {
_throttle_thrust_max = get_current_limit_max_throttle();
_multicopter_flags.spool_mode = THROTTLE_UNLIMITED;
} else if (_throttle_thrust_max < 0.0f) {
_throttle_thrust_max = 0.0f;
}
break;
case THROTTLE_UNLIMITED:
// Throttle should exhibit normal flight behavior.
// Servos should exhibit normal flight behavior.
// initialize limits flags
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// make sure the motors are spooling in the correct direction
if (_spool_desired != DESIRED_THROTTLE_UNLIMITED) {
_multicopter_flags.spool_mode = SPOOL_DOWN;
break;
}
// set and increment ramp variables
_throttle_low_end_pct = 1.0f;
_throttle_thrust_max = get_current_limit_max_throttle();
update_throttle_rpy_mix();
break;
case SPOOL_DOWN:
// Maximum throttle should move from maximum to minimum.
// Servos should exhibit normal flight behavior.
// initialize limits flags
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// make sure the motors are spooling in the correct direction
if (_spool_desired == DESIRED_THROTTLE_UNLIMITED) {
_multicopter_flags.spool_mode = SPOOL_UP;
break;
}
// set and increment ramp variables
_throttle_low_end_pct = 1.0f;
_throttle_thrust_max -= 1.0f/(AP_MOTORS_SPOOL_UP_TIME*_loop_rate);
_throttle_rpy_mix -= 1.0f/(AP_MOTORS_SPOOL_UP_TIME*_loop_rate);
_throttle_rpy_mix_desired = _throttle_rpy_mix;
// constrain ramp value and update mode
if (_throttle_thrust_max <= 0.0f){
_throttle_thrust_max = 0.0f;
}
if (_throttle_rpy_mix <= 0.0f){
_throttle_rpy_mix = 0.0f;
}
if (_throttle_thrust_max >= get_current_limit_max_throttle()) {
_throttle_thrust_max = get_current_limit_max_throttle();
} else if (is_zero(_throttle_thrust_max) && is_zero(_throttle_rpy_mix)) {
_multicopter_flags.spool_mode = SPIN_WHEN_ARMED;
}
break;
}
}
// throttle_pass_through - passes provided pwm directly to all motors - dangerous but used for initialising ESCs
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsMulticopter::throttle_pass_through(int16_t pwm)
{
if (armed()) {
// send the pilot's input directly to each enabled motor
hal.rcout->cork();
for (uint16_t i=0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
rc_write(i, pwm);
}
}
hal.rcout->push();
}
}
// output a thrust to all motors that match a given motor mask. This
// is used to control tiltrotor motors in forward flight. Thrust is in
// the range 0 to 1
void AP_MotorsMulticopter::output_motor_mask(float thrust, uint8_t mask)
{
hal.rcout->cork();
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
int16_t motor_out;
if (mask & (1U<<i)) {
motor_out = calc_thrust_to_pwm(thrust);
} else {
motor_out = _throttle_radio_min;
}
rc_write(i, motor_out);
}
}
hal.rcout->push();
}