mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
219 lines
8.7 KiB
C++
219 lines
8.7 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
SITL.cpp - software in the loop state
|
|
*/
|
|
|
|
#include "SITL.h"
|
|
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <GCS_MAVLink/GCS_MAVLink.h>
|
|
#include <DataFlash/DataFlash.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
namespace SITL {
|
|
|
|
// table of user settable parameters
|
|
const AP_Param::GroupInfo SITL::var_info[] = {
|
|
AP_GROUPINFO("BARO_RND", 0, SITL, baro_noise, 0.2f),
|
|
AP_GROUPINFO("GYR_RND", 1, SITL, gyro_noise, 0),
|
|
AP_GROUPINFO("ACC_RND", 2, SITL, accel_noise, 0),
|
|
AP_GROUPINFO("MAG_RND", 3, SITL, mag_noise, 0),
|
|
AP_GROUPINFO("GPS_DISABLE",4, SITL, gps_disable, 0),
|
|
AP_GROUPINFO("DRIFT_SPEED",5, SITL, drift_speed, 0.05f),
|
|
AP_GROUPINFO("DRIFT_TIME", 6, SITL, drift_time, 5),
|
|
AP_GROUPINFO("GPS_DELAY", 7, SITL, gps_delay, 1),
|
|
AP_GROUPINFO("ENGINE_MUL", 8, SITL, engine_mul, 1),
|
|
AP_GROUPINFO("WIND_SPD", 9, SITL, wind_speed, 0),
|
|
AP_GROUPINFO("WIND_DIR", 10, SITL, wind_direction, 180),
|
|
AP_GROUPINFO("WIND_TURB", 11, SITL, wind_turbulance, 0),
|
|
AP_GROUPINFO("GPS_TYPE", 12, SITL, gps_type, SITL::GPS_TYPE_UBLOX),
|
|
AP_GROUPINFO("GPS_BYTELOSS", 13, SITL, gps_byteloss, 0),
|
|
AP_GROUPINFO("GPS_NUMSATS", 14, SITL, gps_numsats, 10),
|
|
AP_GROUPINFO("MAG_ERROR", 15, SITL, mag_error, 0),
|
|
AP_GROUPINFO("SERVO_SPEED", 16, SITL, servo_speed, 0.14),
|
|
AP_GROUPINFO("GPS_GLITCH", 17, SITL, gps_glitch, 0),
|
|
AP_GROUPINFO("GPS_HZ", 18, SITL, gps_hertz, 5),
|
|
AP_GROUPINFO("BATT_VOLTAGE", 19, SITL, batt_voltage, 12.6f),
|
|
AP_GROUPINFO("ARSPD_RND", 20, SITL, arspd_noise, 0.5f),
|
|
AP_GROUPINFO("ACCEL_FAIL", 21, SITL, accel_fail, 0),
|
|
AP_GROUPINFO("BARO_DRIFT", 22, SITL, baro_drift, 0),
|
|
AP_GROUPINFO("SONAR_GLITCH", 23, SITL, sonar_glitch, 0),
|
|
AP_GROUPINFO("SONAR_RND", 24, SITL, sonar_noise, 0),
|
|
AP_GROUPINFO("RC_FAIL", 25, SITL, rc_fail, 0),
|
|
AP_GROUPINFO("GPS2_ENABLE", 26, SITL, gps2_enable, 0),
|
|
AP_GROUPINFO("BARO_DISABLE", 27, SITL, baro_disable, 0),
|
|
AP_GROUPINFO("FLOAT_EXCEPT", 28, SITL, float_exception, 1),
|
|
AP_GROUPINFO("MAG_MOT", 29, SITL, mag_mot, 0),
|
|
AP_GROUPINFO("ACC_BIAS", 30, SITL, accel_bias, 0),
|
|
AP_GROUPINFO("BARO_GLITCH", 31, SITL, baro_glitch, 0),
|
|
AP_GROUPINFO("SONAR_SCALE", 32, SITL, sonar_scale, 12.1212f),
|
|
AP_GROUPINFO("FLOW_ENABLE", 33, SITL, flow_enable, 0),
|
|
AP_GROUPINFO("TERRAIN", 34, SITL, terrain_enable, 1),
|
|
AP_GROUPINFO("FLOW_RATE", 35, SITL, flow_rate, 10),
|
|
AP_GROUPINFO("FLOW_DELAY", 36, SITL, flow_delay, 0),
|
|
AP_GROUPINFO("GPS_DRIFTALT", 37, SITL, gps_drift_alt, 0),
|
|
AP_GROUPINFO("BARO_DELAY", 38, SITL, baro_delay, 0),
|
|
AP_GROUPINFO("MAG_DELAY", 39, SITL, mag_delay, 0),
|
|
AP_GROUPINFO("WIND_DELAY", 40, SITL, wind_delay, 0),
|
|
AP_GROUPINFO("MAG_OFS", 41, SITL, mag_ofs, 0),
|
|
AP_GROUPINFO("ACC2_RND", 42, SITL, accel2_noise, 0),
|
|
AP_GROUPINFO("ARSPD_FAIL", 43, SITL, arspd_fail, 0),
|
|
AP_GROUPINFO("GYR_SCALE", 44, SITL, gyro_scale, 0),
|
|
AP_GROUPINFO("ADSB_COUNT", 45, SITL, adsb_plane_count, -1),
|
|
AP_GROUPINFO("ADSB_RADIUS", 46, SITL, adsb_radius_m, 10000),
|
|
AP_GROUPINFO("ADSB_ALT", 47, SITL, adsb_altitude_m, 1000),
|
|
AP_GROUPINFO("MAG_ALY", 48, SITL, mag_anomaly_ned, 0),
|
|
AP_GROUPINFO("MAG_ALY_HGT", 49, SITL, mag_anomaly_hgt, 1.0f),
|
|
AP_GROUPINFO("PIN_MASK", 50, SITL, pin_mask, 0),
|
|
AP_GROUPINFO("ADSB_TX", 51, SITL, adsb_tx, 0),
|
|
AP_GROUPINFO("SPEEDUP", 52, SITL, speedup, -1),
|
|
AP_GROUPINFO("IMU_POS", 53, SITL, imu_pos_offset, 0),
|
|
AP_GROUPINFO("GPS_POS", 54, SITL, gps_pos_offset, 0),
|
|
AP_GROUPINFO("SONAR_POS", 55, SITL, rngfnd_pos_offset, 0),
|
|
AP_GROUPINFO("FLOW_POS", 56, SITL, optflow_pos_offset, 0),
|
|
AP_GROUPINFO("ACC2_BIAS", 57, SITL, accel2_bias, 0),
|
|
AP_GROUPINFO("GPS_NOISE", 58, SITL, gps_noise, 0),
|
|
AP_GROUPINFO("GP2_GLITCH", 59, SITL, gps2_glitch, 0),
|
|
AP_GROUPINFO("ENGINE_FAIL", 60, SITL, engine_fail, 0),
|
|
AP_GROUPINFO("GPS2_TYPE", 61, SITL, gps2_type, SITL::GPS_TYPE_UBLOX),
|
|
AP_GROUPINFO("ODOM_ENABLE", 62, SITL, odom_enable, 0),
|
|
AP_SUBGROUPEXTENSION("", 63, SITL, var_info2),
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// second table of user settable parameters for SITL.
|
|
const AP_Param::GroupInfo SITL::var_info2[] = {
|
|
AP_GROUPINFO("TEMP_START", 1, SITL, temp_start, 25),
|
|
AP_GROUPINFO("TEMP_FLIGHT", 2, SITL, temp_flight, 35),
|
|
AP_GROUPINFO("TEMP_TCONST", 3, SITL, temp_tconst, 30),
|
|
AP_GROUPINFO("TEMP_BFACTOR", 4, SITL, temp_baro_factor, 0),
|
|
AP_GROUPINFO("GPS_LOCKTIME", 5, SITL, gps_lock_time, 0),
|
|
AP_GROUPINFO("ARSPD_FAIL_P", 6, SITL, arspd_fail_pressure, 0),
|
|
AP_GROUPINFO("ARSPD_PITOT", 7, SITL, arspd_fail_pitot_pressure, 0),
|
|
AP_GROUPINFO("GPS_ALT_OFS", 8, SITL, gps_alt_offset, 0),
|
|
AP_GROUPINFO("ARSPD_SIGN", 9, SITL, arspd_signflip, 0),
|
|
AP_GROUPINFO("WIND_DIR_Z", 10, SITL, wind_dir_z, 0),
|
|
AP_GROUPINFO("ARSPD2_FAIL", 11, SITL, arspd2_fail, 0),
|
|
AP_GROUPINFO("ARSPD2_FAILP",12, SITL, arspd2_fail_pressure, 0),
|
|
AP_GROUPINFO("ARSPD2_PITOT",13, SITL, arspd2_fail_pitot_pressure, 0),
|
|
AP_GROUPEND
|
|
};
|
|
|
|
|
|
/* report SITL state via MAVLink */
|
|
void SITL::simstate_send(mavlink_channel_t chan)
|
|
{
|
|
float yaw;
|
|
|
|
// convert to same conventions as DCM
|
|
yaw = state.yawDeg;
|
|
if (yaw > 180) {
|
|
yaw -= 360;
|
|
}
|
|
|
|
mavlink_msg_simstate_send(chan,
|
|
ToRad(state.rollDeg),
|
|
ToRad(state.pitchDeg),
|
|
ToRad(yaw),
|
|
state.xAccel,
|
|
state.yAccel,
|
|
state.zAccel,
|
|
radians(state.rollRate),
|
|
radians(state.pitchRate),
|
|
radians(state.yawRate),
|
|
state.latitude*1.0e7,
|
|
state.longitude*1.0e7);
|
|
}
|
|
|
|
/* report SITL state to DataFlash */
|
|
void SITL::Log_Write_SIMSTATE(DataFlash_Class *DataFlash)
|
|
{
|
|
float yaw;
|
|
|
|
// convert to same conventions as DCM
|
|
yaw = state.yawDeg;
|
|
if (yaw > 180) {
|
|
yaw -= 360;
|
|
}
|
|
|
|
struct log_AHRS pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_SIMSTATE_MSG),
|
|
time_us : AP_HAL::micros64(),
|
|
roll : (int16_t)(state.rollDeg*100),
|
|
pitch : (int16_t)(state.pitchDeg*100),
|
|
yaw : (uint16_t)(wrap_360_cd(yaw*100)),
|
|
alt : (float)state.altitude,
|
|
lat : (int32_t)(state.latitude*1.0e7),
|
|
lng : (int32_t)(state.longitude*1.0e7),
|
|
q1 : state.quaternion.q1,
|
|
q2 : state.quaternion.q2,
|
|
q3 : state.quaternion.q3,
|
|
q4 : state.quaternion.q4,
|
|
};
|
|
DataFlash->WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
/*
|
|
convert a set of roll rates from earth frame to body frame
|
|
output values are in radians/second
|
|
*/
|
|
void SITL::convert_body_frame(double rollDeg, double pitchDeg,
|
|
double rollRate, double pitchRate, double yawRate,
|
|
double *p, double *q, double *r)
|
|
{
|
|
double phi, theta, phiDot, thetaDot, psiDot;
|
|
|
|
phi = ToRad(rollDeg);
|
|
theta = ToRad(pitchDeg);
|
|
phiDot = ToRad(rollRate);
|
|
thetaDot = ToRad(pitchRate);
|
|
psiDot = ToRad(yawRate);
|
|
|
|
*p = phiDot - psiDot*sin(theta);
|
|
*q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta);
|
|
*r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot;
|
|
}
|
|
|
|
|
|
/*
|
|
convert angular velocities from body frame to
|
|
earth frame.
|
|
|
|
all inputs and outputs are in radians/s
|
|
*/
|
|
Vector3f SITL::convert_earth_frame(const Matrix3f &dcm, const Vector3f &gyro)
|
|
{
|
|
float p = gyro.x;
|
|
float q = gyro.y;
|
|
float r = gyro.z;
|
|
|
|
float phi, theta, psi;
|
|
dcm.to_euler(&phi, &theta, &psi);
|
|
|
|
float phiDot = p + tanf(theta)*(q*sinf(phi) + r*cosf(phi));
|
|
float thetaDot = q*cosf(phi) - r*sinf(phi);
|
|
if (fabsf(cosf(theta)) < 1.0e-20f) {
|
|
theta += 1.0e-10f;
|
|
}
|
|
float psiDot = (q*sinf(phi) + r*cosf(phi))/cosf(theta);
|
|
return Vector3f(phiDot, thetaDot, psiDot);
|
|
}
|
|
|
|
} // namespace SITL
|