ardupilot/libraries/AP_HAL_ESP32/WiFiUdpDriver.cpp

237 lines
6.0 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL_ESP32/WiFiUdpDriver.h>
#include <AP_Math/AP_Math.h>
#include <AP_HAL_ESP32/Scheduler.h>
#include <sys/param.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "nvs_flash.h"
#include "esp_event.h"
#include "esp_log.h"
#include "lwip/err.h"
#include "lwip/sockets.h"
#include "lwip/sys.h"
#include "lwip/netdb.h"
using namespace ESP32;
extern const AP_HAL::HAL& hal;
#define UDP_PORT 14550
WiFiUdpDriver::WiFiUdpDriver()
{
_state = NOT_INITIALIZED;
accept_socket = -1;
}
void WiFiUdpDriver::_begin(uint32_t b, uint16_t rxS, uint16_t txS)
{
if (_state == NOT_INITIALIZED) {
initialize_wifi();
if (!start_listen()) {
return;
}
if (xTaskCreatePinnedToCore(_wifi_thread2, "APM_WIFI2", Scheduler::WIFI_SS2, this, Scheduler::WIFI_PRIO2, &_wifi_task_handle,0) != pdPASS) {
hal.console->printf("FAILED to create task _wifi_thread2\n");
} else {
hal.console->printf("OK created task _wifi_thread2\n");
}
_readbuf.set_size(RX_BUF_SIZE);
_writebuf.set_size(TX_BUF_SIZE);
_state = INITIALIZED;
}
}
void WiFiUdpDriver::_end()
{
//TODO
}
void WiFiUdpDriver::_flush()
{
}
bool WiFiUdpDriver::is_initialized()
{
return true;
}
bool WiFiUdpDriver::tx_pending()
{
return (_writebuf.available() > 0);
}
uint32_t WiFiUdpDriver::_available()
{
return _readbuf.available();
}
uint32_t WiFiUdpDriver::txspace()
{
int result = _writebuf.space();
result -= TX_BUF_SIZE / 4;
return MAX(result, 0);
}
ssize_t WiFiUdpDriver::_read(uint8_t *buf, uint16_t count)
{
if (!_read_mutex.take_nonblocking()) {
return false;
}
auto ret = _readbuf.read(buf, count);
_read_mutex.give();
return ret;
}
bool WiFiUdpDriver::start_listen()
{
accept_socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
if (accept_socket < 0) {
accept_socket = -1;
return false;
}
int opt;
setsockopt(accept_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
struct sockaddr_in destAddr;
destAddr.sin_addr.s_addr = htonl(INADDR_ANY);
destAddr.sin_family = AF_INET;
destAddr.sin_port = htons(UDP_PORT);
int err = bind(accept_socket, (struct sockaddr *)&destAddr, sizeof(destAddr));
if (err != 0) {
close(accept_socket);
accept_socket = 0;
return false;
}
//memset(&client_addr, 0, sizeof(client_addr));
fcntl(accept_socket, F_SETFL, O_NONBLOCK);
return true;
}
bool WiFiUdpDriver::read_all()
{
_read_mutex.take_blocking();
struct sockaddr_in client_addr;
socklen_t socklen = sizeof(client_addr);
int count = recvfrom(accept_socket, _buffer, sizeof(_buffer) - 1, 0, (struct sockaddr *)&client_addr, &socklen);
if (count > 0) {
_readbuf.write(_buffer, count);
_read_mutex.give();
} else {
return false;
}
_read_mutex.give();
return true;
}
bool WiFiUdpDriver::write_data()
{
_write_mutex.take_blocking();
struct sockaddr_in dest_addr;
dest_addr.sin_addr.s_addr = inet_addr("192.168.4.255");
dest_addr.sin_family = AF_INET;
dest_addr.sin_port = htons(UDP_PORT);
int count = _writebuf.peekbytes(_buffer, sizeof(_buffer));
if (count > 0) {
count = sendto(accept_socket, _buffer, count, 0, (struct sockaddr *)&dest_addr, sizeof(dest_addr));
if (count > 0) {
_writebuf.advance(count);
} else {
_write_mutex.give();
return false;
}
}
_write_mutex.give();
return true;
}
void WiFiUdpDriver::initialize_wifi()
{
esp_event_loop_init(nullptr, nullptr);
tcpip_adapter_init();
nvs_flash_init();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
esp_wifi_init(&cfg);
esp_wifi_set_storage(WIFI_STORAGE_FLASH);
wifi_config_t wifi_config;
memset(&wifi_config, 0, sizeof(wifi_config));
#ifdef WIFI_SSID
strcpy((char *)wifi_config.ap.ssid, WIFI_SSID);
#else
strcpy((char *)wifi_config.ap.ssid, "ardupilot");
#endif
#ifdef WIFI_PWD
strcpy((char *)wifi_config.ap.password, WIFI_PWD);
#else
strcpy((char *)wifi_config.ap.password, "ardupilot1");
#endif
wifi_config.ap.authmode = WIFI_AUTH_WPA_WPA2_PSK;
wifi_config.ap.max_connection = 4;
esp_wifi_set_mode(WIFI_MODE_AP);
esp_wifi_set_config(WIFI_IF_AP, &wifi_config);
esp_wifi_start();
}
size_t WiFiUdpDriver::_write(const uint8_t *buffer, size_t size)
{
if (!_write_mutex.take_nonblocking()) {
return 0;
}
size_t ret = _writebuf.write(buffer, size);
_write_mutex.give();
return ret;
}
void WiFiUdpDriver::_wifi_thread2(void *arg)
{
WiFiUdpDriver *self = (WiFiUdpDriver *) arg;
while (true) {
struct timeval tv = {
.tv_sec = 0,
.tv_usec = 100*1000, // 10 times a sec, we try to write-all even if we read nothing , at just 1000, it floggs the APM_WIFI2 task cpu usage unecessarily, slowing APM_WIFI1 response
};
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(self->accept_socket, &rfds);
int s = select(self->accept_socket + 1, &rfds, NULL, NULL, &tv);
if (s > 0 && FD_ISSET(self->accept_socket, &rfds)) {
self->read_all();
}
self->write_data();
}
}
bool WiFiUdpDriver::_discard_input()
{
return false;
}