ardupilot/ArduCopter/compassmot.cpp
Peter Barker 3403a49236 ArduCopter: make SRV_Channels::cork non-static
for symmetry with the push function
2024-12-12 15:13:40 +11:00

277 lines
10 KiB
C++

#include "Copter.h"
/*
compass/motor interference calibration
*/
// setup_compassmot - sets compass's motor interference parameters
MAV_RESULT Copter::mavlink_compassmot(const GCS_MAVLINK &gcs_chan)
{
#if FRAME_CONFIG == HELI_FRAME
// compassmot not implemented for tradheli
return MAV_RESULT_UNSUPPORTED;
#else
int8_t comp_type; // throttle or current based compensation
Vector3f compass_base[COMPASS_MAX_INSTANCES]; // compass vector when throttle is zero
Vector3f motor_impact[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector
Vector3f motor_impact_scaled[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector scaled with throttle
Vector3f motor_compensation[COMPASS_MAX_INSTANCES]; // final compensation to be stored to eeprom
float throttle_pct; // throttle as a percentage 0.0 ~ 1.0
float throttle_pct_max = 0.0f; // maximum throttle reached (as a percentage 0~1.0)
float current_amps_max = 0.0f; // maximum current reached
float interference_pct[COMPASS_MAX_INSTANCES]{}; // interference as a percentage of total mag field (for reporting purposes only)
uint32_t last_run_time;
uint32_t last_send_time;
bool updated = false; // have we updated the compensation vector at least once
uint8_t command_ack_start = command_ack_counter;
// exit immediately if we are already in compassmot
if (ap.compass_mot) {
// ignore restart messages
return MAV_RESULT_TEMPORARILY_REJECTED;
} else {
ap.compass_mot = true;
}
// check compass is enabled
if (!AP::compass().available()) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Compass disabled");
ap.compass_mot = false;
return MAV_RESULT_TEMPORARILY_REJECTED;
}
// check compass health
compass.read();
for (uint8_t i=0; i<compass.get_count(); i++) {
if (!compass.healthy(i)) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Check compass");
ap.compass_mot = false;
return MAV_RESULT_TEMPORARILY_REJECTED;
}
}
// check if radio is calibrated
if (!arming.rc_calibration_checks(true)) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "RC not calibrated");
ap.compass_mot = false;
return MAV_RESULT_TEMPORARILY_REJECTED;
}
// check throttle is at zero
read_radio();
if (channel_throttle->get_control_in() != 0) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Throttle not zero");
ap.compass_mot = false;
return MAV_RESULT_TEMPORARILY_REJECTED;
}
// check we are landed
if (!ap.land_complete) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Not landed");
ap.compass_mot = false;
return MAV_RESULT_TEMPORARILY_REJECTED;
}
// disable cpu failsafe
failsafe_disable();
float current;
// default compensation type to use current if possible
if (battery.current_amps(current)) {
comp_type = AP_COMPASS_MOT_COMP_CURRENT;
} else {
comp_type = AP_COMPASS_MOT_COMP_THROTTLE;
}
// send back initial ACK
mavlink_msg_command_ack_send(gcs_chan.get_chan(), MAV_CMD_PREFLIGHT_CALIBRATION,0,
0, 0, 0, 0);
// flash leds
AP_Notify::flags.esc_calibration = true;
// warn user we are starting calibration
gcs_chan.send_text(MAV_SEVERITY_INFO, "Starting calibration");
// inform what type of compensation we are attempting
if (comp_type == AP_COMPASS_MOT_COMP_CURRENT) {
gcs_chan.send_text(MAV_SEVERITY_INFO, "Current");
} else {
gcs_chan.send_text(MAV_SEVERITY_INFO, "Throttle");
}
// disable throttle failsafe
g.failsafe_throttle.set(FS_THR_DISABLED);
// disable motor compensation
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
for (uint8_t i=0; i<compass.get_count(); i++) {
compass.set_motor_compensation(i, Vector3f(0,0,0));
}
// get initial compass readings
compass.read();
// store initial x,y,z compass values
// initialise interference percentage
for (uint8_t i=0; i<compass.get_count(); i++) {
compass_base[i] = compass.get_field(i);
interference_pct[i] = 0.0f;
}
EXPECT_DELAY_MS(5000);
// enable motors and pass through throttle
motors->output_min(); // output lowest possible value to motors
motors->armed(true);
hal.util->set_soft_armed(true);
// initialise run time
last_run_time = millis();
last_send_time = millis();
// main run while there is no user input and the compass is healthy
while (command_ack_start == command_ack_counter && compass.healthy() && motors->armed()) {
EXPECT_DELAY_MS(5000);
// 50hz loop
if (millis() - last_run_time < 20) {
hal.scheduler->delay(5);
continue;
}
last_run_time = millis();
// read radio input
read_radio();
// pass through throttle to motors
auto &srv = AP::srv();
srv.cork();
motors->set_throttle_passthrough_for_esc_calibration(channel_throttle->get_control_in() * 0.001f);
srv.push();
// read some compass values
compass.read();
// read current
battery.read();
// calculate scaling for throttle
throttle_pct = (float)channel_throttle->get_control_in() * 0.001f;
throttle_pct = constrain_float(throttle_pct,0.0f,1.0f);
// record maximum throttle
throttle_pct_max = MAX(throttle_pct_max, throttle_pct);
if (!battery.current_amps(current)) {
current = 0;
}
current_amps_max = MAX(current_amps_max, current);
// if throttle is near zero, update base x,y,z values
if (!is_positive(throttle_pct)) {
for (uint8_t i=0; i<compass.get_count(); i++) {
compass_base[i] = compass_base[i] * 0.99f + compass.get_field(i) * 0.01f;
}
} else {
// calculate diff from compass base and scale with throttle
for (uint8_t i=0; i<compass.get_count(); i++) {
motor_impact[i] = compass.get_field(i) - compass_base[i];
}
// throttle based compensation
if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
// for each compass
for (uint8_t i=0; i<compass.get_count(); i++) {
// scale by throttle
motor_impact_scaled[i] = motor_impact[i] / throttle_pct;
// adjust the motor compensation to negate the impact
motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
}
updated = true;
} else {
// for each compass
for (uint8_t i=0; i<compass.get_count(); i++) {
// adjust the motor compensation to negate the impact if drawing over 3amps
if (current >= 3.0f) {
motor_impact_scaled[i] = motor_impact[i] / current;
motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
updated = true;
}
}
}
// calculate interference percentage at full throttle as % of total mag field
if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
for (uint8_t i=0; i<compass.get_count(); i++) {
// interference is impact@fullthrottle / mag field * 100
interference_pct[i] = motor_compensation[i].length() / (float)arming.compass_magfield_expected() * 100.0f;
}
} else {
for (uint8_t i=0; i<compass.get_count(); i++) {
// interference is impact/amp * (max current seen / max throttle seen) / mag field * 100
interference_pct[i] = motor_compensation[i].length() * (current_amps_max/throttle_pct_max) / (float)arming.compass_magfield_expected() * 100.0f;
}
}
}
if (AP_HAL::millis() - last_send_time > 500) {
last_send_time = AP_HAL::millis();
mavlink_msg_compassmot_status_send(gcs_chan.get_chan(),
channel_throttle->get_control_in(),
current,
interference_pct[0],
motor_compensation[0].x,
motor_compensation[0].y,
motor_compensation[0].z);
#if HAL_WITH_ESC_TELEM
// send ESC telemetry to monitor ESC and motor temperatures
AP::esc_telem().send_esc_telemetry_mavlink(gcs_chan.get_chan());
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
// a lot of autotest timeouts are based on receiving system time
gcs_chan.send_system_time();
// autotesting of compassmot wants to see RC channels message
gcs_chan.send_rc_channels();
#endif
}
}
// stop motors
motors->output_min();
motors->armed(false);
hal.util->set_soft_armed(false);
// set and save motor compensation
if (updated) {
compass.motor_compensation_type(comp_type);
for (uint8_t i=0; i<compass.get_count(); i++) {
compass.set_motor_compensation(i, motor_compensation[i]);
}
compass.save_motor_compensation();
// display success message
gcs_chan.send_text(MAV_SEVERITY_INFO, "Calibration successful");
} else {
// compensation vector never updated, report failure
gcs_chan.send_text(MAV_SEVERITY_NOTICE, "Failed");
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
}
// turn off notify leds
AP_Notify::flags.esc_calibration = false;
// re-enable cpu failsafe
failsafe_enable();
// re-enable failsafes
g.failsafe_throttle.load();
// flag we have completed
ap.compass_mot = false;
return MAV_RESULT_ACCEPTED;
#endif // FRAME_CONFIG != HELI_FRAME
}