ardupilot/libraries/AP_NavEKF2/AP_NavEKF2_PosVelFusion.cpp
Paul Riseborough 59bf29198d AP_NavEKF2: Remove unnecessary logic preventing constant position
This removes a legacy design concept that is no longer required in this filter implementation. Planes will not be armed without EKF aiding and the proposed copter throw mode also requires EKF aiding to be operating.
The other problem with interrupting fusion during the launch is it doesn't reduce the corrections, it just delays them as wen the launch completes, the EKF inertial position estimate is still moving still moved and the corrections are therefore just delayed by the short launch interval.

Thank you to OXINARF for picking up the inconsistency with the previous logic
2016-02-18 08:53:43 +09:00

621 lines
29 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
#include "AP_NavEKF2.h"
#include "AP_NavEKF2_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
/********************************************************
* RESET FUNCTIONS *
********************************************************/
// Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute
// Do not reset vertical velocity using GPS as there is baro alt available to constrain drift
void NavEKF2_core::ResetVelocity(void)
{
// Store the position before the reset so that we can record the reset delta
velResetNE.x = stateStruct.velocity.x;
velResetNE.y = stateStruct.velocity.y;
if (PV_AidingMode != AID_ABSOLUTE) {
stateStruct.velocity.zero();
} else if (!gpsNotAvailable) {
// reset horizontal velocity states to the GPS velocity
stateStruct.velocity.x = gpsDataNew.vel.x; // north velocity from blended accel data
stateStruct.velocity.y = gpsDataNew.vel.y; // east velocity from blended accel data
}
for (uint8_t i=0; i<imu_buffer_length; i++) {
storedOutput[i].velocity.x = stateStruct.velocity.x;
storedOutput[i].velocity.y = stateStruct.velocity.y;
}
outputDataNew.velocity.x = stateStruct.velocity.x;
outputDataNew.velocity.y = stateStruct.velocity.y;
outputDataDelayed.velocity.x = stateStruct.velocity.x;
outputDataDelayed.velocity.y = stateStruct.velocity.y;
// Calculate the position jump due to the reset
velResetNE.x = stateStruct.velocity.x - velResetNE.x;
velResetNE.y = stateStruct.velocity.y - velResetNE.y;
// store the time of the reset
lastVelReset_ms = imuSampleTime_ms;
}
// resets position states to last GPS measurement or to zero if in constant position mode
void NavEKF2_core::ResetPosition(void)
{
// Store the position before the reset so that we can record the reset delta
posResetNE.x = stateStruct.position.x;
posResetNE.y = stateStruct.position.y;
if (PV_AidingMode != AID_ABSOLUTE) {
// reset all position state history to the last known position
stateStruct.position.x = lastKnownPositionNE.x;
stateStruct.position.y = lastKnownPositionNE.y;
} else if (!gpsNotAvailable) {
// write to state vector and compensate for offset between last GPs measurement and the EKF time horizon
stateStruct.position.x = gpsDataNew.pos.x + 0.001f*gpsDataNew.vel.x*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms));
stateStruct.position.y = gpsDataNew.pos.y + 0.001f*gpsDataNew.vel.y*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms));
}
for (uint8_t i=0; i<imu_buffer_length; i++) {
storedOutput[i].position.x = stateStruct.position.x;
storedOutput[i].position.y = stateStruct.position.y;
}
outputDataNew.position.x = stateStruct.position.x;
outputDataNew.position.y = stateStruct.position.y;
outputDataDelayed.position.x = stateStruct.position.x;
outputDataDelayed.position.y = stateStruct.position.y;
// Calculate the position jump due to the reset
posResetNE.x = stateStruct.position.x - posResetNE.x;
posResetNE.y = stateStruct.position.y - posResetNE.y;
// store the time of the reset
lastPosReset_ms = imuSampleTime_ms;
}
// reset the vertical position state using the last height measurement
void NavEKF2_core::ResetHeight(void)
{
// write to the state vector
stateStruct.position.z = -hgtMea;
terrainState = stateStruct.position.z + rngOnGnd;
for (uint8_t i=0; i<imu_buffer_length; i++) {
storedOutput[i].position.z = stateStruct.position.z;
}
outputDataNew.position.z = stateStruct.position.z;
outputDataDelayed.position.z = stateStruct.position.z;
// Reset the vertical velocity state using GPS vertical velocity if we are airborne
// Check that GPS vertical velocity data is available and can be used
if (inFlight && !gpsNotAvailable && frontend->_fusionModeGPS == 0) {
stateStruct.velocity.z = gpsDataNew.vel.z;
} else if (onGround) {
stateStruct.velocity.z = 0.0f;
}
for (uint8_t i=0; i<imu_buffer_length; i++) {
storedOutput[i].velocity.z = stateStruct.velocity.z;
}
outputDataNew.velocity.z = stateStruct.velocity.z;
outputDataDelayed.velocity.z = stateStruct.velocity.z;
}
// Reset the baro so that it reads zero at the current height
// Reset the EKF height to zero
// Adjust the EKf origin height so that the EKF height + origin height is the same as before
// Return true if the height datum reset has been performed
// If using a range finder for height do not reset and return false
bool NavEKF2_core::resetHeightDatum(void)
{
// if we are using a range finder for height, return false
if (frontend->_altSource == 1) {
return false;
}
// record the old height estimate
float oldHgt = -stateStruct.position.z;
// reset the barometer so that it reads zero at the current height
frontend->_baro.update_calibration();
// reset the height state
stateStruct.position.z = 0.0f;
// adjust the height of the EKF origin so that the origin plus baro height before and afer the reset is the same
if (validOrigin) {
EKF_origin.alt += oldHgt*100;
}
return true;
}
/********************************************************
* FUSE MEASURED_DATA *
********************************************************/
// select fusion of velocity, position and height measurements
void NavEKF2_core::SelectVelPosFusion()
{
// Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz
// If so, don't fuse measurements on this time step to reduce frame over-runs
// Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements
if (magFusePerformed && dtIMUavg < 0.005f && !posVelFusionDelayed) {
posVelFusionDelayed = true;
return;
} else {
posVelFusionDelayed = false;
}
// read GPS data from the sensor and check for new data in the buffer
readGpsData();
gpsDataToFuse = storedGPS.recall(gpsDataDelayed,imuDataDelayed.time_ms);
// Determine if we need to fuse position and velocity data on this time step
if (gpsDataToFuse && PV_AidingMode == AID_ABSOLUTE) {
// Don't fuse velocity data if GPS doesn't support it
if (frontend->_fusionModeGPS <= 1) {
fuseVelData = true;
} else {
fuseVelData = false;
}
fusePosData = true;
} else {
fuseVelData = false;
fusePosData = false;
}
// Select height data to be fused from the available baro, range finder and GPS sources
selectHeightForFusion();
// If we are operating without any aiding, fuse in the last known position
// to constrain tilt drift. This assumes a non-manoeuvring vehicle
// Do this to coincide with the height fusion
if (fuseHgtData && PV_AidingMode == AID_NONE) {
gpsDataDelayed.vel.zero();
gpsDataDelayed.pos.x = lastKnownPositionNE.x;
gpsDataDelayed.pos.y = lastKnownPositionNE.y;
fusePosData = true;
fuseVelData = false;
}
// perform fusion
if (fuseVelData || fusePosData || fuseHgtData) {
FuseVelPosNED();
// clear the flags to prevent repeated fusion of the same data
fuseVelData = false;
fuseHgtData = false;
fusePosData = false;
}
}
// fuse selected position, velocity and height measurements
void NavEKF2_core::FuseVelPosNED()
{
// start performance timer
hal.util->perf_begin(_perf_FuseVelPosNED);
// health is set bad until test passed
velHealth = false;
posHealth = false;
hgtHealth = false;
// declare variables used to check measurement errors
Vector3f velInnov;
// declare variables used to control access to arrays
bool fuseData[6] = {false,false,false,false,false,false};
uint8_t stateIndex;
uint8_t obsIndex;
// declare variables used by state and covariance update calculations
float posErr;
Vector6 R_OBS; // Measurement variances used for fusion
Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only
Vector6 observation;
float SK;
// perform sequential fusion of GPS measurements. This assumes that the
// errors in the different velocity and position components are
// uncorrelated which is not true, however in the absence of covariance
// data from the GPS receiver it is the only assumption we can make
// so we might as well take advantage of the computational efficiencies
// associated with sequential fusion
if (fuseVelData || fusePosData || fuseHgtData) {
// set the GPS data timeout depending on whether airspeed data is present
uint32_t gpsRetryTime;
if (useAirspeed()) gpsRetryTime = frontend->gpsRetryTimeUseTAS_ms;
else gpsRetryTime = frontend->gpsRetryTimeNoTAS_ms;
// form the observation vector
observation[0] = gpsDataDelayed.vel.x;
observation[1] = gpsDataDelayed.vel.y;
observation[2] = gpsDataDelayed.vel.z;
observation[3] = gpsDataDelayed.pos.x;
observation[4] = gpsDataDelayed.pos.y;
observation[5] = -hgtMea;
// calculate additional error in GPS position caused by manoeuvring
posErr = frontend->gpsPosVarAccScale * accNavMag;
// estimate the GPS Velocity, GPS horiz position and height measurement variances.
// Use different errors if operating without external aiding using an assumed position or velocity of zero
if (PV_AidingMode == AID_NONE) {
if (tiltAlignComplete && motorsArmed) {
// This is a compromise between corrections for gyro errors and reducing effect of manoeuvre accelerations on tilt estimate
R_OBS[0] = sq(constrain_float(frontend->_noaidHorizNoise, 0.5f, 50.0f));
} else {
// Use a smaller value to give faster initial alignment
R_OBS[0] = sq(0.5f);
}
R_OBS[1] = R_OBS[0];
R_OBS[2] = R_OBS[0];
R_OBS[3] = R_OBS[0];
R_OBS[4] = R_OBS[0];
for (uint8_t i=0; i<=2; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i];
} else {
if (gpsSpdAccuracy > 0.0f) {
// use GPS receivers reported speed accuracy if available and floor at value set by gps noise parameter
R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsHorizVelNoise, 50.0f));
R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsVertVelNoise, 50.0f));
} else {
// calculate additional error in GPS velocity caused by manoeuvring
R_OBS[0] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag);
R_OBS[2] = sq(constrain_float(frontend->_gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsDVelVarAccScale * accNavMag);
}
R_OBS[1] = R_OBS[0];
// For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity
// For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance
// plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early
R_OBS[3] = sq(constrain_float(frontend->_gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr);
R_OBS[4] = R_OBS[3];
for (uint8_t i=0; i<=2; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag);
}
R_OBS[5] = posDownObsNoise;
for (uint8_t i=3; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i];
// if vertical GPS velocity data and an independant height source is being used, check to see if the GPS vertical velocity and altimeter
// innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting
// the accelerometers and we should disable the GPS and barometer innovation consistency checks.
if (useGpsVertVel && fuseVelData && (frontend->_altSource != 2)) {
// calculate innovations for height and vertical GPS vel measurements
float hgtErr = stateStruct.position.z - observation[5];
float velDErr = stateStruct.velocity.z - observation[2];
// check if they are the same sign and both more than 3-sigma out of bounds
if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) {
badIMUdata = true;
} else {
badIMUdata = false;
}
}
// calculate innovations and check GPS data validity using an innovation consistency check
// test position measurements
if (fusePosData) {
// test horizontal position measurements
innovVelPos[3] = stateStruct.position.x - observation[3];
innovVelPos[4] = stateStruct.position.y - observation[4];
varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3];
varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4];
// apply an innovation consistency threshold test, but don't fail if bad IMU data
float maxPosInnov2 = sq(MAX(0.01f * (float)frontend->_gpsPosInnovGate, 1.0f))*(varInnovVelPos[3] + varInnovVelPos[4]);
posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2;
posHealth = ((posTestRatio < 1.0f) || badIMUdata);
// declare a timeout condition if we have been too long without data or not aiding
posTimeout = (((imuSampleTime_ms - lastPosPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE);
// use position data if healthy or timed out
if (PV_AidingMode == AID_NONE) {
posHealth = true;
lastPosPassTime_ms = imuSampleTime_ms;
} else if (posHealth || posTimeout) {
posHealth = true;
lastPosPassTime_ms = imuSampleTime_ms;
// if timed out or outside the specified uncertainty radius, reset to the GPS
if (posTimeout || ((P[6][6] + P[7][7]) > sq(float(frontend->_gpsGlitchRadiusMax)))) {
// reset the position to the current GPS position
ResetPosition();
// reset the velocity to the GPS velocity
ResetVelocity();
// don't fuse GPS data on this time step
fusePosData = false;
fuseVelData = false;
// Reset the position variances and corresponding covariances to a value that will pass the checks
zeroRows(P,6,7);
zeroCols(P,6,7);
P[6][6] = sq(float(0.5f*frontend->_gpsGlitchRadiusMax));
P[7][7] = P[6][6];
// Reset the normalised innovation to avoid failing the bad fusion tests
posTestRatio = 0.0f;
velTestRatio = 0.0f;
}
} else {
posHealth = false;
}
}
// test velocity measurements
if (fuseVelData) {
// test velocity measurements
uint8_t imax = 2;
// Don't fuse vertical velocity observations if inhibited by the user or if we are using synthetic data
if (frontend->_fusionModeGPS >= 1 || PV_AidingMode != AID_ABSOLUTE) {
imax = 1;
}
float innovVelSumSq = 0; // sum of squares of velocity innovations
float varVelSum = 0; // sum of velocity innovation variances
for (uint8_t i = 0; i<=imax; i++) {
// velocity states start at index 3
stateIndex = i + 3;
// calculate innovations using blended and single IMU predicted states
velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended
// calculate innovation variance
varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i];
// sum the innovation and innovation variances
innovVelSumSq += sq(velInnov[i]);
varVelSum += varInnovVelPos[i];
}
// apply an innovation consistency threshold test, but don't fail if bad IMU data
// calculate the test ratio
velTestRatio = innovVelSumSq / (varVelSum * sq(MAX(0.01f * (float)frontend->_gpsVelInnovGate, 1.0f)));
// fail if the ratio is greater than 1
velHealth = ((velTestRatio < 1.0f) || badIMUdata);
// declare a timeout if we have not fused velocity data for too long or not aiding
velTimeout = (((imuSampleTime_ms - lastVelPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE);
// use velocity data if healthy, timed out, or in constant position mode
if (velHealth || velTimeout) {
velHealth = true;
// restart the timeout count
lastVelPassTime_ms = imuSampleTime_ms;
// If we are doing full aiding and velocity fusion times out, reset to the GPS velocity
if (PV_AidingMode == AID_ABSOLUTE && velTimeout) {
// reset the velocity to the GPS velocity
ResetVelocity();
// don't fuse GPS velocity data on this time step
fuseVelData = false;
// Reset the normalised innovation to avoid failing the bad fusion tests
velTestRatio = 0.0f;
}
} else {
velHealth = false;
}
}
// test height measurements
if (fuseHgtData) {
// calculate height innovations
innovVelPos[5] = stateStruct.position.z - observation[5];
varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5];
// calculate the innovation consistency test ratio
hgtTestRatio = sq(innovVelPos[5]) / (sq(MAX(0.01f * (float)frontend->_hgtInnovGate, 1.0f)) * varInnovVelPos[5]);
// fail if the ratio is > 1, but don't fail if bad IMU data
hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata);
// Fuse height data if healthy or timed out or in constant position mode
if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE && onGround)) {
// Calculate a filtered value to be used by pre-flight health checks
// We need to filter because wind gusts can generate significant baro noise and we want to be able to detect bias errors in the inertial solution
if (onGround) {
float dtBaro = (imuSampleTime_ms - lastHgtPassTime_ms)*1.0e-3f;
const float hgtInnovFiltTC = 2.0f;
float alpha = constrain_float(dtBaro/(dtBaro+hgtInnovFiltTC),0.0f,1.0f);
hgtInnovFiltState += (innovVelPos[5]-hgtInnovFiltState)*alpha;
} else {
hgtInnovFiltState = 0.0f;
}
// if timed out, reset the height
if (hgtTimeout) {
ResetHeight();
hgtTimeout = false;
}
// If we have got this far then declare the height data as healthy and reset the timeout counter
hgtHealth = true;
lastHgtPassTime_ms = imuSampleTime_ms;
}
}
// set range for sequential fusion of velocity and position measurements depending on which data is available and its health
if (fuseVelData && velHealth) {
fuseData[0] = true;
fuseData[1] = true;
if (useGpsVertVel) {
fuseData[2] = true;
}
tiltErrVec.zero();
}
if (fusePosData && posHealth) {
fuseData[3] = true;
fuseData[4] = true;
tiltErrVec.zero();
}
if (fuseHgtData && hgtHealth) {
fuseData[5] = true;
}
// fuse measurements sequentially
for (obsIndex=0; obsIndex<=5; obsIndex++) {
if (fuseData[obsIndex]) {
stateIndex = 3 + obsIndex;
// calculate the measurement innovation, using states from a different time coordinate if fusing height data
// adjust scaling on GPS measurement noise variances if not enough satellites
if (obsIndex <= 2)
{
innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex];
R_OBS[obsIndex] *= sq(gpsNoiseScaler);
}
else if (obsIndex == 3 || obsIndex == 4) {
innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
R_OBS[obsIndex] *= sq(gpsNoiseScaler);
} else if (obsIndex == 5) {
innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
const float gndMaxBaroErr = 4.0f;
const float gndBaroInnovFloor = -0.5f;
if(getTouchdownExpected()) {
// when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor
// constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr
// this function looks like this:
// |/
//---------|---------
// ____/|
// / |
// / |
innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr);
}
}
// calculate the Kalman gain and calculate innovation variances
varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex];
SK = 1.0f/varInnovVelPos[obsIndex];
for (uint8_t i= 0; i<=15; i++) {
Kfusion[i] = P[i][stateIndex]*SK;
}
// inhibit magnetic field state estimation by setting Kalman gains to zero
if (!inhibitMagStates) {
for (uint8_t i = 16; i<=21; i++) {
Kfusion[i] = P[i][stateIndex]*SK;
}
} else {
for (uint8_t i = 16; i<=21; i++) {
Kfusion[i] = 0.0f;
}
}
// inhibit wind state estimation by setting Kalman gains to zero
if (!inhibitWindStates) {
Kfusion[22] = P[22][stateIndex]*SK;
Kfusion[23] = P[23][stateIndex]*SK;
} else {
Kfusion[22] = 0.0f;
Kfusion[23] = 0.0f;
}
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
stateStruct.angErr.zero();
// calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data
for (uint8_t i = 0; i<=stateIndexLim; i++) {
statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex];
}
// the first 3 states represent the angular misalignment vector. This is
// is used to correct the estimated quaternion
stateStruct.quat.rotate(stateStruct.angErr);
// sum the attitude error from velocity and position fusion only
// used as a metric for convergence monitoring
if (obsIndex != 5) {
tiltErrVec += stateStruct.angErr;
}
// update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations
// this is a numerically optimised implementation of standard equation P = (I - K*H)*P;
for (uint8_t i= 0; i<=stateIndexLim; i++) {
for (uint8_t j= 0; j<=stateIndexLim; j++)
{
KHP[i][j] = Kfusion[i] * P[stateIndex][j];
}
}
for (uint8_t i= 0; i<=stateIndexLim; i++) {
for (uint8_t j= 0; j<=stateIndexLim; j++) {
P[i][j] = P[i][j] - KHP[i][j];
}
}
}
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
ForceSymmetry();
ConstrainVariances();
// stop performance timer
hal.util->perf_end(_perf_FuseVelPosNED);
}
/********************************************************
* MISC FUNCTIONS *
********************************************************/
// select the height measurement to be fused from the available baro, range finder and GPS sources
void NavEKF2_core::selectHeightForFusion()
{
// Read range finder data and check for new data in the buffer
// This data is used by both height and optical flow fusion processing
readRangeFinder();
rangeDataToFuse = storedRange.recall(rangeDataDelayed,imuDataDelayed.time_ms);
// read baro height data from the sensor and check for new data in the buffer
readBaroData();
baroDataToFuse = storedBaro.recall(baroDataDelayed, imuDataDelayed.time_ms);
// determine if we should be using a height source other than baro
bool usingRangeForHgt = (frontend->_altSource == 1 && imuSampleTime_ms - rngValidMeaTime_ms < 500 && frontend->_fusionModeGPS == 3);
bool usingGpsForHgt = (frontend->_altSource == 2 && imuSampleTime_ms - lastTimeGpsReceived_ms < 500 && validOrigin);
// if there is new baro data to fuse, calculate filterred baro data required by other processes
if (baroDataToFuse) {
// calculate offset to baro data that enables baro to be used as a backup if we are using other height sources
if (usingRangeForHgt || usingGpsForHgt) {
calcFiltBaroOffset();
}
// filtered baro data used to provide a reference for takeoff
// it is is reset to last height measurement on disarming in performArmingChecks()
if (!getTakeoffExpected()) {
const float gndHgtFiltTC = 0.5f;
const float dtBaro = frontend->hgtAvg_ms*1.0e-3f;
float alpha = constrain_float(dtBaro / (dtBaro+gndHgtFiltTC),0.0f,1.0f);
meaHgtAtTakeOff += (baroDataDelayed.hgt-meaHgtAtTakeOff)*alpha;
}
}
// Select the height measurement source
if (rangeDataToFuse && usingRangeForHgt) {
// using range finder data
// correct for tilt using a flat earth model
if (prevTnb.c.z >= 0.7) {
hgtMea = MAX(rangeDataDelayed.rng * prevTnb.c.z, rngOnGnd);
// enable fusion
fuseHgtData = true;
// set the observation noise
posDownObsNoise = sq(constrain_float(frontend->_rngNoise, 0.1f, 10.0f));
} else {
// disable fusion if tilted too far
fuseHgtData = false;
}
} else if (gpsDataToFuse && usingGpsForHgt) {
// using GPS data
hgtMea = gpsDataDelayed.hgt;
// enable fusion
fuseHgtData = true;
// set the observation noise to the horizontal GPS noise plus a scaler becasue GPS vertical position is usually less accurate
// TODO use VDOP/HDOP, reported accuracy or a separate parameter
posDownObsNoise = sq(constrain_float(frontend->_gpsHorizPosNoise * 1.5f, 0.1f, 10.0f));
} else if (baroDataToFuse && !usingRangeForHgt && !usingGpsForHgt) {
// using Baro data
hgtMea = baroDataDelayed.hgt - baroHgtOffset;
// enable fusion
fuseHgtData = true;
// set the observation noise
posDownObsNoise = sq(constrain_float(frontend->_baroAltNoise, 0.1f, 10.0f));
// reduce weighting (increase observation noise) on baro if we are likely to be in ground effect
if (getTakeoffExpected() || getTouchdownExpected()) {
posDownObsNoise *= frontend->gndEffectBaroScaler;
}
} else {
fuseHgtData = false;
}
// If we haven't fused height data for a while, then declare the height data as being timed out
// set timeout period based on whether we have vertical GPS velocity available to constrain drift
hgtRetryTime_ms = (useGpsVertVel && !velTimeout) ? frontend->hgtRetryTimeMode0_ms : frontend->hgtRetryTimeMode12_ms;
if (imuSampleTime_ms - lastHgtPassTime_ms > hgtRetryTime_ms) {
hgtTimeout = true;
} else {
hgtTimeout = false;
}
}
#endif // HAL_CPU_CLASS