ardupilot/ArduCopter/setup.pde

1155 lines
34 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// Functions called from the setup menu
static int8_t setup_radio (uint8_t argc, const Menu::arg *argv);
static int8_t setup_motors (uint8_t argc, const Menu::arg *argv);
static int8_t setup_accel (uint8_t argc, const Menu::arg *argv);
static int8_t setup_accel_scale (uint8_t argc, const Menu::arg *argv);
static int8_t setup_frame (uint8_t argc, const Menu::arg *argv);
static int8_t setup_factory (uint8_t argc, const Menu::arg *argv);
static int8_t setup_erase (uint8_t argc, const Menu::arg *argv);
static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv);
static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv);
static int8_t setup_sonar (uint8_t argc, const Menu::arg *argv);
static int8_t setup_compass (uint8_t argc, const Menu::arg *argv);
static int8_t setup_tune (uint8_t argc, const Menu::arg *argv);
static int8_t setup_range (uint8_t argc, const Menu::arg *argv);
//static int8_t setup_mag_offset (uint8_t argc, const Menu::arg *argv);
static int8_t setup_declination (uint8_t argc, const Menu::arg *argv);
static int8_t setup_optflow (uint8_t argc, const Menu::arg *argv);
#if FRAME_CONFIG == HELI_FRAME
static int8_t setup_heli (uint8_t argc, const Menu::arg *argv);
static int8_t setup_gyro (uint8_t argc, const Menu::arg *argv);
#endif
// Command/function table for the setup menu
const struct Menu::command setup_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"erase", setup_erase},
{"reset", setup_factory},
{"radio", setup_radio},
{"frame", setup_frame},
{"motors", setup_motors},
{"level", setup_accel},
{"accel", setup_accel_scale},
{"modes", setup_flightmodes},
{"battery", setup_batt_monitor},
{"sonar", setup_sonar},
{"compass", setup_compass},
{"tune", setup_tune},
{"range", setup_range},
// {"offsets", setup_mag_offset},
{"declination", setup_declination},
{"optflow", setup_optflow},
#if FRAME_CONFIG == HELI_FRAME
{"heli", setup_heli},
{"gyro", setup_gyro},
#endif
{"show", setup_show}
};
// Create the setup menu object.
MENU(setup_menu, "setup", setup_menu_commands);
// Called from the top-level menu to run the setup menu.
static int8_t
setup_mode(uint8_t argc, const Menu::arg *argv)
{
// Give the user some guidance
cliSerial->printf_P(PSTR("Setup Mode\n\n\n"));
//"\n"
//"IMPORTANT: if you have not previously set this system up, use the\n"
//"'reset' command to initialize the EEPROM to sensible default values\n"
//"and then the 'radio' command to configure for your radio.\n"
//"\n"));
if(g.rc_1.radio_min >= 1300) {
delay(1000);
cliSerial->printf_P(PSTR("\n!Warning, radio not configured!"));
delay(1000);
cliSerial->printf_P(PSTR("\n Type 'radio' now.\n\n"));
}
// Run the setup menu. When the menu exits, we will return to the main menu.
setup_menu.run();
return 0;
}
// Print the current configuration.
// Called by the setup menu 'show' command.
static int8_t
setup_show(uint8_t argc, const Menu::arg *argv)
{
// clear the area
print_blanks(8);
report_version();
report_radio();
report_frame();
report_batt_monitor();
report_sonar();
//report_gains();
//report_xtrack();
//report_throttle();
report_flight_modes();
report_ins();
report_compass();
report_optflow();
#if FRAME_CONFIG == HELI_FRAME
report_heli();
report_gyro();
#endif
AP_Param::show_all();
return(0);
}
// Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults).
// Called by the setup menu 'factoryreset' command.
static int8_t
setup_factory(uint8_t argc, const Menu::arg *argv)
{
int16_t c;
cliSerial->printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n"));
do {
c = cliSerial->read();
} while (-1 == c);
if (('y' != c) && ('Y' != c))
return(-1);
AP_Param::erase_all();
cliSerial->printf_P(PSTR("\nReboot APM"));
delay(1000);
//default_gains();
for (;; ) {
}
// note, cannot actually return here
return(0);
}
// Perform radio setup.
// Called by the setup menu 'radio' command.
static int8_t
setup_radio(uint8_t argc, const Menu::arg *argv)
{
cliSerial->println_P(PSTR("\n\nRadio Setup:"));
uint8_t i;
for(i = 0; i < 100; i++) {
delay(20);
read_radio();
}
if(g.rc_1.radio_in < 500) {
while(1) {
//cliSerial->printf_P(PSTR("\nNo radio; Check connectors."));
delay(1000);
// stop here
}
}
g.rc_1.radio_min = g.rc_1.radio_in;
g.rc_2.radio_min = g.rc_2.radio_in;
g.rc_3.radio_min = g.rc_3.radio_in;
g.rc_4.radio_min = g.rc_4.radio_in;
g.rc_5.radio_min = g.rc_5.radio_in;
g.rc_6.radio_min = g.rc_6.radio_in;
g.rc_7.radio_min = g.rc_7.radio_in;
g.rc_8.radio_min = g.rc_8.radio_in;
g.rc_1.radio_max = g.rc_1.radio_in;
g.rc_2.radio_max = g.rc_2.radio_in;
g.rc_3.radio_max = g.rc_3.radio_in;
g.rc_4.radio_max = g.rc_4.radio_in;
g.rc_5.radio_max = g.rc_5.radio_in;
g.rc_6.radio_max = g.rc_6.radio_in;
g.rc_7.radio_max = g.rc_7.radio_in;
g.rc_8.radio_max = g.rc_8.radio_in;
g.rc_1.radio_trim = g.rc_1.radio_in;
g.rc_2.radio_trim = g.rc_2.radio_in;
g.rc_4.radio_trim = g.rc_4.radio_in;
// 3 is not trimed
g.rc_5.radio_trim = 1500;
g.rc_6.radio_trim = 1500;
g.rc_7.radio_trim = 1500;
g.rc_8.radio_trim = 1500;
cliSerial->printf_P(PSTR("\nMove all controls to extremes. Enter to save: "));
while(1) {
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
g.rc_1.update_min_max();
g.rc_2.update_min_max();
g.rc_3.update_min_max();
g.rc_4.update_min_max();
g.rc_5.update_min_max();
g.rc_6.update_min_max();
g.rc_7.update_min_max();
g.rc_8.update_min_max();
if(cliSerial->available() > 0) {
delay(20);
while (cliSerial->read() != -1); /* flush */
g.rc_1.save_eeprom();
g.rc_2.save_eeprom();
g.rc_3.save_eeprom();
g.rc_4.save_eeprom();
g.rc_5.save_eeprom();
g.rc_6.save_eeprom();
g.rc_7.save_eeprom();
g.rc_8.save_eeprom();
print_done();
break;
}
}
report_radio();
return(0);
}
static int8_t
setup_motors(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR(
"Connect battery for this test.\n"
"Motors will not spin in channel order (1,2,3,4) but by frame position order.\n"
"Front (& right of centerline) motor first, then in clockwise order around frame.\n"
"http://code.google.com/p/arducopter/wiki/AC2_Props_2 for demo video.\n"
"Remember to disconnect battery after this test.\n"
"Any key to exit.\n"));
while(1) {
delay(20);
read_radio();
motors.output_test();
if(cliSerial->available() > 0) {
g.esc_calibrate.set_and_save(0);
return(0);
}
}
}
static int8_t
setup_accel(uint8_t argc, const Menu::arg *argv)
{
ahrs.init();
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
flash_leds);
ins.init_accel(flash_leds);
ahrs.set_trim(Vector3f(0,0,0)); // clear out saved trim
report_ins();
return(0);
}
/*
handle full accelerometer calibration via user dialog
*/
static void setup_printf_P(const prog_char_t *fmt, ...)
{
va_list arg_list;
va_start(arg_list, fmt);
cliSerial->printf_P(fmt, arg_list);
va_end(arg_list);
}
static void setup_wait_key(void)
{
// wait for user input
while (!cliSerial->available()) {
delay(20);
}
// clear input buffer
while( cliSerial->available() ) {
cliSerial->read();
}
}
static int8_t
setup_accel_scale(uint8_t argc, const Menu::arg *argv)
{
cliSerial->println_P(PSTR("Initialising gyros"));
ahrs.init();
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
flash_leds);
AP_InertialSensor_UserInteractStream interact(hal.console);
ins.calibrate_accel(flash_leds, &interact);
report_ins();
return(0);
}
static int8_t
setup_frame(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("x"))) {
g.frame_orientation.set_and_save(X_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("p"))) {
g.frame_orientation.set_and_save(PLUS_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("+"))) {
g.frame_orientation.set_and_save(PLUS_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("v"))) {
g.frame_orientation.set_and_save(V_FRAME);
}else{
cliSerial->printf_P(PSTR("\nOp:[x,+,v]\n"));
report_frame();
return 0;
}
report_frame();
return 0;
}
static int8_t
setup_flightmodes(uint8_t argc, const Menu::arg *argv)
{
uint8_t _switchPosition = 0;
uint8_t _oldSwitchPosition = 0;
int8_t mode = 0;
cliSerial->printf_P(PSTR("\nMode switch to edit, aileron: select modes, rudder: Simple on/off\n"));
print_hit_enter();
while(1) {
delay(20);
read_radio();
_switchPosition = readSwitch();
// look for control switch change
if (_oldSwitchPosition != _switchPosition) {
mode = flight_modes[_switchPosition];
mode = constrain(mode, 0, NUM_MODES-1);
// update the user
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
// Remember switch position
_oldSwitchPosition = _switchPosition;
}
// look for stick input
if (abs(g.rc_1.control_in) > 3000) {
mode++;
if(mode >= NUM_MODES)
mode = 0;
// save new mode
flight_modes[_switchPosition] = mode;
// print new mode
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
delay(500);
}
// look for stick input
if (g.rc_4.control_in > 3000) {
g.simple_modes |= (1<<_switchPosition);
// print new mode
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
delay(500);
}
// look for stick input
if (g.rc_4.control_in < -3000) {
g.simple_modes &= ~(1<<_switchPosition);
// print new mode
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
delay(500);
}
// escape hatch
if(cliSerial->available() > 0) {
for (mode = 0; mode < 6; mode++)
flight_modes[mode].save();
g.simple_modes.save();
print_done();
report_flight_modes();
return (0);
}
}
}
static int8_t
setup_declination(uint8_t argc, const Menu::arg *argv)
{
compass.set_declination(radians(argv[1].f));
report_compass();
return 0;
}
static int8_t
setup_tune(uint8_t argc, const Menu::arg *argv)
{
g.radio_tuning.set_and_save(argv[1].i);
//g.radio_tuning_high.set_and_save(1000);
//g.radio_tuning_low.set_and_save(0);
report_tuning();
return 0;
}
static int8_t
setup_range(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("\nCH 6 Ranges are divided by 1000: [low, high]\n"));
g.radio_tuning_low.set_and_save(argv[1].i);
g.radio_tuning_high.set_and_save(argv[2].i);
report_tuning();
return 0;
}
static int8_t
setup_erase(uint8_t argc, const Menu::arg *argv)
{
zero_eeprom();
return 0;
}
static int8_t
setup_compass(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.compass_enabled.set_and_save(true);
init_compass();
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
clear_offsets();
g.compass_enabled.set_and_save(false);
}else{
cliSerial->printf_P(PSTR("\nOp:[on,off]\n"));
report_compass();
return 0;
}
g.compass_enabled.save();
report_compass();
return 0;
}
static int8_t
setup_batt_monitor(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.battery_monitoring.set_and_save(0);
} else if(argv[1].i > 0 && argv[1].i <= 4) {
g.battery_monitoring.set_and_save(argv[1].i);
} else {
cliSerial->printf_P(PSTR("\nOp: off, 3-4"));
}
report_batt_monitor();
return 0;
}
static int8_t
setup_sonar(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.sonar_enabled.set_and_save(true);
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.sonar_enabled.set_and_save(false);
} else if (argc > 1 && (argv[1].i >= 0 && argv[1].i <= 3)) {
g.sonar_enabled.set_and_save(true); // if you set the sonar type, surely you want it on
g.sonar_type.set_and_save(argv[1].i);
}else{
cliSerial->printf_P(PSTR("\nOp:[on, off, 0-3]\n"));
report_sonar();
return 0;
}
report_sonar();
return 0;
}
#if FRAME_CONFIG == HELI_FRAME
// Perform heli setup.
// Called by the setup menu 'radio' command.
static int8_t
setup_heli(uint8_t argc, const Menu::arg *argv)
{
uint8_t active_servo = 0;
int16_t value = 0;
int16_t temp;
int16_t state = 0; // 0 = set rev+pos, 1 = capture min/max
int16_t max_roll=0, max_pitch=0, min_collective=0, max_collective=0, min_tail=0, max_tail=0;
// initialise swash plate
motors.init_swash();
// source swash plate movements directly from radio
motors.servo_manual = true;
// display initial settings
report_heli();
// display help
cliSerial->printf_P(PSTR("Instructions:"));
print_divider();
cliSerial->printf_P(PSTR("\td\t\tdisplay settings\n"));
cliSerial->printf_P(PSTR("\t1~4\t\tselect servo\n"));
cliSerial->printf_P(PSTR("\ta or z\t\tmove mid up/down\n"));
cliSerial->printf_P(PSTR("\tc\t\tset coll when blade pitch zero\n"));
cliSerial->printf_P(PSTR("\tm\t\tset roll, pitch, coll min/max\n"));
cliSerial->printf_P(PSTR("\tp<angle>\tset pos (i.e. p0 = front, p90 = right)\n"));
cliSerial->printf_P(PSTR("\tr\t\treverse servo\n"));
cliSerial->printf_P(PSTR("\tu a|d\t\tupdate rate (a=analog servo, d=digital)\n"));
cliSerial->printf_P(PSTR("\tt<angle>\tset trim (-500 ~ 500)\n"));
cliSerial->printf_P(PSTR("\tx\t\texit & save\n"));
// start capturing
while( value != 'x' ) {
// read radio although we don't use it yet
read_radio();
// allow swash plate to move
motors.output_armed();
// record min/max
if( state == 1 ) {
if( abs(g.rc_1.control_in) > max_roll )
max_roll = abs(g.rc_1.control_in);
if( abs(g.rc_2.control_in) > max_pitch )
max_pitch = abs(g.rc_2.control_in);
if( g.rc_3.radio_out < min_collective )
min_collective = g.rc_3.radio_out;
if( g.rc_3.radio_out > max_collective )
max_collective = g.rc_3.radio_out;
min_tail = min(g.rc_4.radio_out, min_tail);
max_tail = max(g.rc_4.radio_out, max_tail);
}
if( cliSerial->available() ) {
value = cliSerial->read();
// process the user's input
switch( value ) {
case '1':
active_servo = CH_1;
break;
case '2':
active_servo = CH_2;
break;
case '3':
active_servo = CH_3;
break;
case '4':
active_servo = CH_4;
break;
case 'a':
case 'A':
heli_get_servo(active_servo)->radio_trim += 10;
break;
case 'c':
case 'C':
if( g.rc_3.radio_out >= 900 && g.rc_3.radio_out <= 2100 ) {
motors.collective_mid = g.rc_3.radio_out;
cliSerial->printf_P(PSTR("Collective when blade pitch at zero: %d\n"),(int)motors.collective_mid);
}
break;
case 'd':
case 'D':
// display settings
report_heli();
break;
case 'm':
case 'M':
if( state == 0 ) {
state = 1; // switch to capture min/max mode
cliSerial->printf_P(PSTR("Move coll, roll, pitch and tail to extremes, press 'm' when done\n"));
// reset servo ranges
motors.roll_max = motors.pitch_max = 4500;
motors.collective_min = 1000;
motors.collective_max = 2000;
motors._servo_4->radio_min = 1000;
motors._servo_4->radio_max = 2000;
// set sensible values in temp variables
max_roll = abs(g.rc_1.control_in);
max_pitch = abs(g.rc_2.control_in);
min_collective = 2000;
max_collective = 1000;
min_tail = max_tail = abs(g.rc_4.radio_out);
}else{
state = 0; // switch back to normal mode
// double check values aren't totally terrible
if( max_roll <= 1000 || max_pitch <= 1000 || (max_collective - min_collective < 200) || (max_tail - min_tail < 200) || min_tail < 1000 || max_tail > 2000 )
cliSerial->printf_P(PSTR("Invalid min/max captured roll:%d, pitch:%d, collective min: %d max: %d, tail min:%d max:%d\n"),max_roll,max_pitch,min_collective,max_collective,min_tail,max_tail);
else{
motors.roll_max = max_roll;
motors.pitch_max = max_pitch;
motors.collective_min = min_collective;
motors.collective_max = max_collective;
motors._servo_4->radio_min = min_tail;
motors._servo_4->radio_max = max_tail;
// reinitialise swash
motors.init_swash();
// display settings
report_heli();
}
}
break;
case 'p':
case 'P':
temp = read_num_from_serial();
if( temp >= -360 && temp <= 360 ) {
if( active_servo == CH_1 )
motors.servo1_pos = temp;
if( active_servo == CH_2 )
motors.servo2_pos = temp;
if( active_servo == CH_3 )
motors.servo3_pos = temp;
motors.init_swash();
cliSerial->printf_P(PSTR("Servo %d\t\tpos:%d\n"),active_servo+1, temp);
}
break;
case 'r':
case 'R':
heli_get_servo(active_servo)->set_reverse(!heli_get_servo(active_servo)->get_reverse());
break;
case 't':
case 'T':
temp = read_num_from_serial();
if( temp > 1000 )
temp -= 1500;
if( temp > -500 && temp < 500 ) {
heli_get_servo(active_servo)->radio_trim = 1500 + temp;
motors.init_swash();
cliSerial->printf_P(PSTR("Servo %d\t\ttrim:%d\n"),active_servo+1, 1500 + temp);
}
break;
case 'u':
case 'U':
temp = 0;
// delay up to 2 seconds for servo type from user
while( !cliSerial->available() && temp < 20 ) {
temp++;
delay(100);
}
if( cliSerial->available() ) {
value = cliSerial->read();
if( value == 'a' || value == 'A' ) {
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS);
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately
cliSerial->printf_P(PSTR("Analog Servo %dhz\n"),(int)g.rc_speed);
}
if( value == 'd' || value == 'D' ) {
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS);
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately
cliSerial->printf_P(PSTR("Digital Servo %dhz\n"),(int)g.rc_speed);
}
}
break;
case 'z':
case 'Z':
heli_get_servo(active_servo)->radio_trim -= 10;
break;
}
}
delay(20);
}
// display final settings
report_heli();
// save to eeprom
motors._servo_1->save_eeprom();
motors._servo_2->save_eeprom();
motors._servo_3->save_eeprom();
motors._servo_4->save_eeprom();
motors.servo1_pos.save();
motors.servo2_pos.save();
motors.servo3_pos.save();
motors.roll_max.save();
motors.pitch_max.save();
motors.collective_min.save();
motors.collective_max.save();
motors.collective_mid.save();
// return swash plate movements to attitude controller
motors.servo_manual = false;
return(0);
}
// setup for external tail gyro (for heli only)
static int8_t
setup_gyro(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
motors.ext_gyro_enabled.set_and_save(true);
// optionally capture the gain
if( argc >= 2 && argv[2].i >= 1000 && argv[2].i <= 2000 ) {
motors.ext_gyro_gain = argv[2].i;
motors.ext_gyro_gain.save();
}
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
motors.ext_gyro_enabled.set_and_save(false);
// capture gain if user simply provides a number
} else if( argv[1].i >= 1000 && argv[1].i <= 2000 ) {
motors.ext_gyro_enabled.set_and_save(true);
motors.ext_gyro_gain = argv[1].i;
motors.ext_gyro_gain.save();
}else{
cliSerial->printf_P(PSTR("\nOp:[on, off] gain\n"));
}
report_gyro();
return 0;
}
#endif // FRAME_CONFIG == HELI
static void clear_offsets()
{
Vector3f _offsets(0.0,0.0,0.0);
compass.set_offsets(_offsets);
compass.save_offsets();
}
static int8_t
setup_optflow(uint8_t argc, const Menu::arg *argv)
{
#if OPTFLOW == ENABLED
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.optflow_enabled = true;
init_optflow();
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.optflow_enabled = false;
}else{
cliSerial->printf_P(PSTR("\nOp:[on, off]\n"));
report_optflow();
return 0;
}
g.optflow_enabled.save();
report_optflow();
#endif // OPTFLOW == ENABLED
return 0;
}
/***************************************************************************/
// CLI reports
/***************************************************************************/
static void report_batt_monitor()
{
cliSerial->printf_P(PSTR("\nBatt Mon:\n"));
print_divider();
if(g.battery_monitoring == 0) print_enabled(false);
if(g.battery_monitoring == 3) cliSerial->printf_P(PSTR("volts"));
if(g.battery_monitoring == 4) cliSerial->printf_P(PSTR("volts and cur"));
print_blanks(2);
}
static void report_wp(uint8_t index = 255)
{
if(index == 255) {
for(uint8_t i = 0; i < g.command_total; i++) {
struct Location temp = get_cmd_with_index(i);
print_wp(&temp, i);
}
}else{
struct Location temp = get_cmd_with_index(index);
print_wp(&temp, index);
}
}
static void report_sonar()
{
cliSerial->printf_P(PSTR("Sonar\n"));
print_divider();
print_enabled(g.sonar_enabled.get());
cliSerial->printf_P(PSTR("Type: %d (0=XL, 1=LV, 2=XLL, 3=HRLV)"), (int)g.sonar_type);
print_blanks(2);
}
static void report_frame()
{
cliSerial->printf_P(PSTR("Frame\n"));
print_divider();
#if FRAME_CONFIG == QUAD_FRAME
cliSerial->printf_P(PSTR("Quad frame\n"));
#elif FRAME_CONFIG == TRI_FRAME
cliSerial->printf_P(PSTR("TRI frame\n"));
#elif FRAME_CONFIG == HEXA_FRAME
cliSerial->printf_P(PSTR("Hexa frame\n"));
#elif FRAME_CONFIG == Y6_FRAME
cliSerial->printf_P(PSTR("Y6 frame\n"));
#elif FRAME_CONFIG == OCTA_FRAME
cliSerial->printf_P(PSTR("Octa frame\n"));
#elif FRAME_CONFIG == HELI_FRAME
cliSerial->printf_P(PSTR("Heli frame\n"));
#endif
#if FRAME_CONFIG != HELI_FRAME
if(g.frame_orientation == X_FRAME)
cliSerial->printf_P(PSTR("X mode\n"));
else if(g.frame_orientation == PLUS_FRAME)
cliSerial->printf_P(PSTR("+ mode\n"));
else if(g.frame_orientation == V_FRAME)
cliSerial->printf_P(PSTR("V mode\n"));
#endif
print_blanks(2);
}
static void report_radio()
{
cliSerial->printf_P(PSTR("Radio\n"));
print_divider();
// radio
print_radio_values();
print_blanks(2);
}
static void report_ins()
{
cliSerial->printf_P(PSTR("INS\n"));
print_divider();
print_gyro_offsets();
print_accel_offsets_and_scaling();
print_blanks(2);
}
static void report_compass()
{
cliSerial->printf_P(PSTR("Compass\n"));
print_divider();
print_enabled(g.compass_enabled);
// mag declination
cliSerial->printf_P(PSTR("Mag Dec: %4.4f\n"),
degrees(compass.get_declination()));
Vector3f offsets = compass.get_offsets();
// mag offsets
cliSerial->printf_P(PSTR("Mag off: %4.4f, %4.4f, %4.4f"),
offsets.x,
offsets.y,
offsets.z);
print_blanks(2);
}
static void report_flight_modes()
{
cliSerial->printf_P(PSTR("Flight modes\n"));
print_divider();
for(int16_t i = 0; i < 6; i++ ) {
print_switch(i, flight_modes[i], (g.simple_modes & (1<<i)));
}
print_blanks(2);
}
void report_optflow()
{
#if OPTFLOW == ENABLED
cliSerial->printf_P(PSTR("OptFlow\n"));
print_divider();
print_enabled(g.optflow_enabled);
// field of view
//cliSerial->printf_P(PSTR("FOV: %4.0f\n"),
// degrees(g.optflow_fov));
print_blanks(2);
#endif // OPTFLOW == ENABLED
}
#if FRAME_CONFIG == HELI_FRAME
static void report_heli()
{
cliSerial->printf_P(PSTR("Heli\n"));
print_divider();
// main servo settings
cliSerial->printf_P(PSTR("Servo \tpos \tmin \tmax \trev\n"));
cliSerial->printf_P(PSTR("1:\t%d \t%d \t%d \t%d\n"),(int)motors.servo1_pos, (int)motors._servo_1->radio_min, (int)motors._servo_1->radio_max, (int)motors._servo_1->get_reverse());
cliSerial->printf_P(PSTR("2:\t%d \t%d \t%d \t%d\n"),(int)motors.servo2_pos, (int)motors._servo_2->radio_min, (int)motors._servo_2->radio_max, (int)motors._servo_2->get_reverse());
cliSerial->printf_P(PSTR("3:\t%d \t%d \t%d \t%d\n"),(int)motors.servo3_pos, (int)motors._servo_3->radio_min, (int)motors._servo_3->radio_max, (int)motors._servo_3->get_reverse());
cliSerial->printf_P(PSTR("tail:\t\t%d \t%d \t%d\n"), (int)motors._servo_4->radio_min, (int)motors._servo_4->radio_max, (int)motors._servo_4->get_reverse());
cliSerial->printf_P(PSTR("roll max: \t%d\n"), (int)motors.roll_max);
cliSerial->printf_P(PSTR("pitch max: \t%d\n"), (int)motors.pitch_max);
cliSerial->printf_P(PSTR("coll min:\t%d\t mid:%d\t max:%d\n"),(int)motors.collective_min, (int)motors.collective_mid, (int)motors.collective_max);
// calculate and print servo rate
cliSerial->printf_P(PSTR("servo rate:\t%d hz\n"),(int)g.rc_speed);
print_blanks(2);
}
static void report_gyro()
{
cliSerial->printf_P(PSTR("Gyro:\n"));
print_divider();
print_enabled( motors.ext_gyro_enabled );
if( motors.ext_gyro_enabled )
cliSerial->printf_P(PSTR("gain: %d"),(int)motors.ext_gyro_gain);
print_blanks(2);
}
#endif // FRAME_CONFIG == HELI_FRAME
/***************************************************************************/
// CLI utilities
/***************************************************************************/
/*static void
* print_PID(PI * pid)
* {
* cliSerial->printf_P(PSTR("P: %4.2f, I:%4.2f, IMAX:%ld\n"),
* pid->kP(),
* pid->kI(),
* (long)pid->imax());
* }
*/
static void
print_radio_values()
{
cliSerial->printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max);
cliSerial->printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max);
cliSerial->printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max);
cliSerial->printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max);
cliSerial->printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max);
cliSerial->printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max);
cliSerial->printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max);
//cliSerial->printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max);
}
static void
print_switch(uint8_t p, uint8_t m, bool b)
{
cliSerial->printf_P(PSTR("Pos %d:\t"),p);
print_flight_mode(m);
cliSerial->printf_P(PSTR(",\t\tSimple: "));
if(b)
cliSerial->printf_P(PSTR("ON\n"));
else
cliSerial->printf_P(PSTR("OFF\n"));
}
static void
print_done()
{
cliSerial->printf_P(PSTR("\nSaved\n"));
}
static void zero_eeprom(void)
{
cliSerial->printf_P(PSTR("\nErasing EEPROM\n"));
for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i++) {
hal.storage->write_byte(i, 0);
}
cliSerial->printf_P(PSTR("done\n"));
}
static void
print_accel_offsets_and_scaling(void)
{
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f accel_scale = ins.get_accel_scale();
cliSerial->printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\tA_scale: %4.2f, %4.2f, %4.2f\n"),
(float)accel_offsets.x, // Pitch
(float)accel_offsets.y, // Roll
(float)accel_offsets.z, // YAW
(float)accel_scale.x, // Pitch
(float)accel_scale.y, // Roll
(float)accel_scale.z); // YAW
}
static void
print_gyro_offsets(void)
{
Vector3f gyro_offsets = ins.get_gyro_offsets();
cliSerial->printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"),
(float)gyro_offsets.x,
(float)gyro_offsets.y,
(float)gyro_offsets.z);
}
#if FRAME_CONFIG == HELI_FRAME
static RC_Channel *
heli_get_servo(int16_t servo_num){
if( servo_num == CH_1 )
return motors._servo_1;
if( servo_num == CH_2 )
return motors._servo_2;
if( servo_num == CH_3 )
return motors._servo_3;
if( servo_num == CH_4 )
return motors._servo_4;
return NULL;
}
// Used to read integer values from the serial port
static int16_t read_num_from_serial() {
uint8_t index = 0;
uint8_t timeout = 0;
char data[5] = "";
do {
if (cliSerial->available() == 0) {
delay(10);
timeout++;
}else{
data[index] = cliSerial->read();
timeout = 0;
index++;
}
} while (timeout < 5 && index < 5);
return atoi(data);
}
#endif
#endif // CLI_ENABLED
static void
print_blanks(int16_t num)
{
while(num > 0) {
num--;
cliSerial->println("");
}
}
static void
print_divider(void)
{
for (int i = 0; i < 40; i++) {
cliSerial->print_P(PSTR("-"));
}
cliSerial->println();
}
static void print_enabled(bool b)
{
if(b)
cliSerial->print_P(PSTR("en"));
else
cliSerial->print_P(PSTR("dis"));
cliSerial->print_P(PSTR("abled\n"));
}
static void
init_esc()
{
motors.enable();
motors.armed(true);
while(1) {
read_radio();
delay(100);
dancing_light();
motors.throttle_pass_through();
}
}
static void print_wp(struct Location *cmd, uint8_t index)
{
//float t1 = (float)cmd->lat / t7;
//float t2 = (float)cmd->lng / t7;
cliSerial->printf_P(PSTR("cmd#: %d | %d, %d, %d, %ld, %ld, %ld\n"),
index,
cmd->id,
cmd->options,
cmd->p1,
cmd->alt,
cmd->lat,
cmd->lng);
/*
cliSerial->printf_P(PSTR("cmd#: %d id:%d op:%d p1:%d p2:%ld p3:%4.7f p4:%4.7f \n"),
(int)index,
(int)cmd->id,
(int)cmd->options,
(int)cmd->p1,
(long)cmd->alt,
t1,
t2);
*/
}
static void report_version()
{
cliSerial->printf_P(PSTR("FW Ver: %d\n"),(int)g.k_format_version);
print_divider();
print_blanks(2);
}
static void report_tuning()
{
cliSerial->printf_P(PSTR("\nTUNE:\n"));
print_divider();
if (g.radio_tuning == 0) {
print_enabled(g.radio_tuning.get());
}else{
float low = (float)g.radio_tuning_low.get() / 1000;
float high = (float)g.radio_tuning_high.get() / 1000;
cliSerial->printf_P(PSTR(" %d, Low:%1.4f, High:%1.4f\n"),(int)g.radio_tuning.get(), low, high);
}
print_blanks(2);
}