ardupilot/libraries/RC_Channel/RC_Channel.cpp

352 lines
8.7 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* RC_Channel.cpp - class for one RC channel input
*/
#include <stdlib.h>
#include <cmath>
#include <AP_HAL/AP_HAL.h>
extern const AP_HAL::HAL& hal;
#include <AP_Math/AP_Math.h>
#include "RC_Channel.h"
uint32_t RC_Channel::configured_mask;
const AP_Param::GroupInfo RC_Channel::var_info[] = {
// @Param: MIN
// @DisplayName: RC min PWM
// @Description: RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: PWM
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MIN", 1, RC_Channel, radio_min, 1100),
// @Param: TRIM
// @DisplayName: RC trim PWM
// @Description: RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: PWM
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("TRIM", 2, RC_Channel, radio_trim, 1500),
// @Param: MAX
// @DisplayName: RC max PWM
// @Description: RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: PWM
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MAX", 3, RC_Channel, radio_max, 1900),
// @Param: REVERSED
// @DisplayName: RC reversed
// @Description: Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.
// @Values: 0:Normal,1:Reversed
// @User: Advanced
AP_GROUPINFO("REVERSED", 4, RC_Channel, reversed, 0),
// @Param: DZ
// @DisplayName: RC dead-zone
// @Description: PWM dead zone in microseconds around trim or bottom
// @Units: PWM
// @Range: 0 200
// @User: Advanced
AP_GROUPINFO("DZ", 5, RC_Channel, dead_zone, 0),
AP_GROUPEND
};
// constructor
RC_Channel::RC_Channel(void)
{
AP_Param::setup_object_defaults(this, var_info);
}
void
RC_Channel::set_range(uint16_t high)
{
type_in = RC_CHANNEL_TYPE_RANGE;
high_in = high;
}
void
RC_Channel::set_angle(uint16_t angle)
{
type_in = RC_CHANNEL_TYPE_ANGLE;
high_in = angle;
}
void
RC_Channel::set_default_dead_zone(int16_t dzone)
{
dead_zone.set_default(abs(dzone));
}
bool
RC_Channel::get_reverse(void) const
{
return bool(reversed.get());
}
// read input from APM_RC - create a control_in value
void
RC_Channel::set_pwm(int16_t pwm)
{
radio_in = pwm;
if (type_in == RC_CHANNEL_TYPE_RANGE) {
control_in = pwm_to_range();
} else {
//RC_CHANNEL_TYPE_ANGLE
control_in = pwm_to_angle();
}
}
// recompute control values with no deadzone
// When done this way the control_in value can be used as servo_out
// to give the same output as input
void
RC_Channel::recompute_pwm_no_deadzone()
{
if (type_in == RC_CHANNEL_TYPE_RANGE) {
control_in = pwm_to_range_dz(0);
} else {
//RC_CHANNEL_ANGLE
control_in = pwm_to_angle_dz(0);
}
}
/*
return the center stick position expressed as a control_in value
used for thr_mid in copter
*/
int16_t RC_Channel::get_control_mid() const
{
if (type_in == RC_CHANNEL_TYPE_RANGE) {
int16_t r_in = (radio_min.get() + radio_max.get())/2;
if (reversed) {
r_in = radio_max.get() - (r_in - radio_min.get());
}
int16_t radio_trim_low = radio_min + dead_zone;
return (((int32_t)(high_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low));
} else {
return 0;
}
}
// ------------------------------------------
void RC_Channel::load_eeprom(void)
{
radio_min.load();
radio_trim.load();
radio_max.load();
reversed.load();
dead_zone.load();
}
void RC_Channel::save_eeprom(void)
{
radio_min.save();
radio_trim.save();
radio_max.save();
reversed.save();
dead_zone.save();
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value using the specified dead_zone
*/
int16_t
RC_Channel::pwm_to_angle_dz_trim(uint16_t _dead_zone, uint16_t _trim)
{
int16_t radio_trim_high = _trim + _dead_zone;
int16_t radio_trim_low = _trim - _dead_zone;
int16_t reverse_mul = (reversed?-1:1);
if (radio_in > radio_trim_high && radio_max != radio_trim_high) {
return reverse_mul * ((int32_t)high_in * (int32_t)(radio_in - radio_trim_high)) / (int32_t)(radio_max - radio_trim_high);
} else if (radio_in < radio_trim_low && radio_trim_low != radio_min) {
return reverse_mul * ((int32_t)high_in * (int32_t)(radio_in - radio_trim_low)) / (int32_t)(radio_trim_low - radio_min);
} else {
return 0;
}
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value using the specified dead_zone
*/
int16_t
RC_Channel::pwm_to_angle_dz(uint16_t _dead_zone)
{
return pwm_to_angle_dz_trim(_dead_zone, radio_trim);
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value
*/
int16_t
RC_Channel::pwm_to_angle()
{
return pwm_to_angle_dz(dead_zone);
}
/*
convert a pulse width modulation value to a value in the configured
range, using the specified deadzone
*/
int16_t
RC_Channel::pwm_to_range_dz(uint16_t _dead_zone)
{
int16_t r_in = constrain_int16(radio_in, radio_min.get(), radio_max.get());
if (reversed) {
r_in = radio_max.get() - (r_in - radio_min.get());
}
int16_t radio_trim_low = radio_min + _dead_zone;
if (r_in > radio_trim_low) {
return (((int32_t)(high_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low));
}
return 0;
}
/*
convert a pulse width modulation value to a value in the configured
range
*/
int16_t
RC_Channel::pwm_to_range()
{
return pwm_to_range_dz(dead_zone);
}
int16_t RC_Channel::get_control_in_zero_dz(void)
{
if (type_in == RC_CHANNEL_TYPE_RANGE) {
return pwm_to_range_dz(0);
}
return pwm_to_angle_dz(0);
}
// ------------------------------------------
float
RC_Channel::norm_input()
{
float ret;
int16_t reverse_mul = (reversed?-1:1);
if (radio_in < radio_trim) {
if (radio_min >= radio_trim) {
return 0.0f;
}
ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
} else {
if (radio_max <= radio_trim) {
return 0.0f;
}
ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
}
return constrain_float(ret, -1.0f, 1.0f);
}
float
RC_Channel::norm_input_dz()
{
int16_t dz_min = radio_trim - dead_zone;
int16_t dz_max = radio_trim + dead_zone;
float ret;
int16_t reverse_mul = (reversed?-1:1);
if (radio_in < dz_min && dz_min > radio_min) {
ret = reverse_mul * (float)(radio_in - dz_min) / (float)(dz_min - radio_min);
} else if (radio_in > dz_max && radio_max > dz_max) {
ret = reverse_mul * (float)(radio_in - dz_max) / (float)(radio_max - dz_max);
} else {
ret = 0;
}
return constrain_float(ret, -1.0f, 1.0f);
}
/*
get percentage input from 0 to 100. This ignores the trim value.
*/
uint8_t
RC_Channel::percent_input()
{
if (radio_in <= radio_min) {
return reversed?100:0;
}
if (radio_in >= radio_max) {
return reversed?0:100;
}
uint8_t ret = 100.0f * (radio_in - radio_min) / (float)(radio_max - radio_min);
if (reversed) {
ret = 100 - ret;
}
return ret;
}
void
RC_Channel::input()
{
radio_in = hal.rcin->read(ch_in);
}
uint16_t
RC_Channel::read() const
{
return hal.rcin->read(ch_in);
}
/*
Return true if the channel is at trim and within the DZ
*/
bool RC_Channel::in_trim_dz()
{
return is_bounded_int32(radio_in, radio_trim - dead_zone, radio_trim + dead_zone);
}
bool RC_Channel::min_max_configured() const
{
if (configured_mask & (1U << ch_in)) {
return true;
}
if (radio_min.configured() && radio_max.configured()) {
// once a channel is known to be configured it has to stay
// configured due to the nature of AP_Param
configured_mask |= (1U<<ch_in);
return true;
}
return false;
}