mirror of https://github.com/ArduPilot/ardupilot
51 lines
1.4 KiB
Matlab
51 lines
1.4 KiB
Matlab
function [...
|
|
states, ... % state vector after fusion of measurements
|
|
P, ... % state covariance matrix after fusion of corrections
|
|
innovation,... % NED velocity innovations (m/s)
|
|
varInnov] ... % NED velocity innovation variance ((m/s)^2)
|
|
= FuseVelocity( ...
|
|
states, ... % predicted states from the INS
|
|
P, ... % predicted covariance
|
|
measVel) % NED velocity measurements (m/s)
|
|
|
|
R_OBS = 0.5^2;
|
|
innovation = zeros(1,3);
|
|
varInnov = zeros(1,3);
|
|
% Fuse measurements sequentially
|
|
for obsIndex = 1:3
|
|
stateIndex = 4 + obsIndex;
|
|
% Calculate the velocity measurement innovation
|
|
innovation(obsIndex) = states(stateIndex) - measVel(obsIndex);
|
|
|
|
% Calculate the Kalman Gain
|
|
H = zeros(1,10);
|
|
H(1,stateIndex) = 1;
|
|
varInnov(obsIndex) = (H*P*transpose(H) + R_OBS);
|
|
K = (P*transpose(H))/varInnov(obsIndex);
|
|
|
|
% Calculate state corrections
|
|
xk = K * innovation(obsIndex);
|
|
|
|
% Apply the state corrections
|
|
states = states - xk;
|
|
|
|
% re-normalise the quaternion
|
|
quatMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2 + states(4)^2);
|
|
states(1:4) = states(1:4) / quatMag;
|
|
|
|
% Update the covariance
|
|
P = P - K*H*P;
|
|
|
|
% Force symmetry on the covariance matrix to prevent ill-conditioning
|
|
P = 0.5*(P + transpose(P));
|
|
|
|
% ensure diagonals are positive
|
|
for i=1:10
|
|
if P(i,i) < 0
|
|
P(i,i) = 0;
|
|
end
|
|
end
|
|
|
|
end
|
|
|
|
end |