ardupilot/libraries/AP_HAL/utility/RCOutput_Tap.cpp

581 lines
17 KiB
C++

/*
* Copyright (c) 2016 PX4 Development Team. All rights reserved.
* Copyright (C) 2017 Intel Corporation. All rights reserved.
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Implementation of TAP UART ESCs. Used the implementation from PX4 as a base
* which is BSD-licensed:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <AP_HAL/AP_HAL.h>
#ifdef HAL_RCOUTPUT_TAP_DEVICE
#include "RCOutput_Tap.h"
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <termios.h>
#include <unistd.h>
#include <AP_Math/AP_Math.h>
#define DEBUG 0
#if DEBUG
#define debug(fmt, args...) ::printf(fmt "\n", ##args)
#else
#define debug(fmt, args...)
#endif
extern const AP_HAL::HAL &hal;
/****** ESC data types ******/
#define ESC_HAVE_CURRENT_SENSOR
static const uint8_t crcTable[256] = {
0x00, 0xE7, 0x29, 0xCE, 0x52, 0xB5, 0x7B, 0x9C, 0xA4, 0x43, 0x8D, 0x6A,
0xF6, 0x11, 0xDF, 0x38, 0xAF, 0x48, 0x86, 0x61, 0xFD, 0x1A, 0xD4, 0x33,
0x0B, 0xEC, 0x22, 0xC5, 0x59, 0xBE, 0x70, 0x97, 0xB9, 0x5E, 0x90, 0x77,
0xEB, 0x0C, 0xC2, 0x25, 0x1D, 0xFA, 0x34, 0xD3, 0x4F, 0xA8, 0x66, 0x81,
0x16, 0xF1, 0x3F, 0xD8, 0x44, 0xA3, 0x6D, 0x8A, 0xB2, 0x55, 0x9B, 0x7C,
0xE0, 0x07, 0xC9, 0x2E, 0x95, 0x72, 0xBC, 0x5B, 0xC7, 0x20, 0xEE, 0x09,
0x31, 0xD6, 0x18, 0xFF, 0x63, 0x84, 0x4A, 0xAD, 0x3A, 0xDD, 0x13, 0xF4,
0x68, 0x8F, 0x41, 0xA6, 0x9E, 0x79, 0xB7, 0x50, 0xCC, 0x2B, 0xE5, 0x02,
0x2C, 0xCB, 0x05, 0xE2, 0x7E, 0x99, 0x57, 0xB0, 0x88, 0x6F, 0xA1, 0x46,
0xDA, 0x3D, 0xF3, 0x14, 0x83, 0x64, 0xAA, 0x4D, 0xD1, 0x36, 0xF8, 0x1F,
0x27, 0xC0, 0x0E, 0xE9, 0x75, 0x92, 0x5C, 0xBB, 0xCD, 0x2A, 0xE4, 0x03,
0x9F, 0x78, 0xB6, 0x51, 0x69, 0x8E, 0x40, 0xA7, 0x3B, 0xDC, 0x12, 0xF5,
0x62, 0x85, 0x4B, 0xAC, 0x30, 0xD7, 0x19, 0xFE, 0xC6, 0x21, 0xEF, 0x08,
0x94, 0x73, 0xBD, 0x5A, 0x74, 0x93, 0x5D, 0xBA, 0x26, 0xC1, 0x0F, 0xE8,
0xD0, 0x37, 0xF9, 0x1E, 0x82, 0x65, 0xAB, 0x4C, 0xDB, 0x3C, 0xF2, 0x15,
0x89, 0x6E, 0xA0, 0x47, 0x7F, 0x98, 0x56, 0xB1, 0x2D, 0xCA, 0x04, 0xE3,
0x58, 0xBF, 0x71, 0x96, 0x0A, 0xED, 0x23, 0xC4, 0xFC, 0x1B, 0xD5, 0x32,
0xAE, 0x49, 0x87, 0x60, 0xF7, 0x10, 0xDE, 0x39, 0xA5, 0x42, 0x8C, 0x6B,
0x53, 0xB4, 0x7A, 0x9D, 0x01, 0xE6, 0x28, 0xCF, 0xE1, 0x06, 0xC8, 0x2F,
0xB3, 0x54, 0x9A, 0x7D, 0x45, 0xA2, 0x6C, 0x8B, 0x17, 0xF0, 0x3E, 0xD9,
0x4E, 0xA9, 0x67, 0x80, 0x1C, 0xFB, 0x35, 0xD2, 0xEA, 0x0D, 0xC3, 0x24,
0xB8, 0x5F, 0x91, 0x76
};
// Circular from back right in CCW direction
static const uint8_t device_mux_map[] = {0, 1, 4, 3, 2, 5, 7, 8};
// 0 is CW, 1 is CCW
static const uint8_t device_dir_map[] = {0, 1, 0, 1, 0, 1, 0, 1};
#define TAP_ESC_MAX_PACKET_LEN 20
#define TAP_ESC_MAX_MOTOR_NUM 8
/*
* ESC_POS maps the values stored in the channelMapTable to reorder the ESC's
* id so that that match the mux setting, so that the ressonder's data
* will be read.
* The index on channelMapTable[p] p is the physical ESC
* The value it is set to is the logical value from ESC_POS[p]
* Phy Log
* 0 0
* 1 1
* 2 4
* 3 3
* 4 2
* 5 5
* ....
*
*/
#define RPMMAX 1900
#define RPMMIN 1200
#define RPMSTOPPED (RPMMIN - 10)
#define MIN_BOOT_TIME_MSEC (550) // Minimum time to wait after Power on before sending commands
namespace ap {
/****** Run ***********/
#define RUN_CHANNEL_VALUE_MASK (uint16_t)0x07ff
#define RUN_RED_LED_ON_MASK (uint16_t)0x0800
#define RUN_GREEN_LED_ON_MASK (uint16_t)0x1000
#define RUN_BLUE_LED_ON_MASK (uint16_t)0x2000
#define RUN_LED_ON_MASK (uint16_t)0x3800
#define RUN_FEEDBACK_ENABLE_MASK (uint16_t)0x4000
#define RUN_REVERSE_MASK (uint16_t)0x8000
struct PACKED RunReq {
uint16_t value[TAP_ESC_MAX_MOTOR_NUM];
};
struct PACKED RunInfoRepsonse {
uint8_t channelID;
uint8_t ESCStatus;
int16_t speed; // -32767 - 32768
#if defined(ESC_HAVE_VOLTAGE_SENSOR)
uint16_t voltage; // 0.00 - 100.00 V
#endif
#if defined(ESC_HAVE_CURRENT_SENSOR)
uint16_t current; // 0.0 - 200.0 A
#endif
#if defined(ESC_HAVE_TEMPERATURE_SENSOR)
uint8_t temperature; // 0 - 256 degree celsius
#endif
};
/****** Run ***********/
/****** ConFigInfoBasic ***********/
struct PACKED ConfigInfoBasicRequest {
uint8_t maxChannelInUse;
uint8_t channelMapTable[TAP_ESC_MAX_MOTOR_NUM];
uint8_t monitorMsgType;
uint8_t controlMode;
uint16_t minChannelValue;
uint16_t maxChannelValue;
};
struct PACKED ConfigInfoBasicResponse {
uint8_t channelID;
ConfigInfoBasicRequest resp;
};
#define ESC_CHANNEL_MAP_CHANNEL 0x0f
#define ESC_CHANNEL_MAP_RUNNING_DIRECTION 0xf0
/****** ConFigInfoBasicResponse ***********/
/****** InfoRequest ***********/
enum InfoTypes {
REQUEST_INFO_BASIC = 0,
REQUEST_INFO_FUll,
REQUEST_INFO_RUN,
REQUEST_INFO_STUDY,
REQUEST_INFO_COMM,
REQUEST_INFO_DEVICE,
};
struct PACKED InfoRequest {
uint8_t channelID;
uint8_t requestInfoType;
};
/****** InfoRequest ***********/
struct PACKED EscPacket {
uint8_t head;
uint8_t len;
uint8_t msg_id;
union {
InfoRequest reqInfo;
ConfigInfoBasicRequest reqConfigInfoBasic;
RunReq reqRun;
ConfigInfoBasicResponse rspConfigInfoBasic;
RunInfoRepsonse rspRunInfo;
uint8_t bytes[100];
} d;
uint8_t crc_data;
};
//static const unsigned ESC_PACKET_DATA_OFFSET = offsetof(EscPacket, d);
static const unsigned ESC_PACKET_DATA_OFFSET = 3;
/******************************************************************************************
* ESCBUS_MSG_ID_RUN_INFO packet
*
* Monitor message of ESCs while motor is running
*
* channelID: assigned channel number
*
* ESCStatus: status of ESC
* Num Health status
* 0 HEALTHY
* 1 WARNING_LOW_VOLTAGE
* 2 WARNING_OVER_CURRENT
* 3 WARNING_OVER_HEAT
* 4 ERROR_MOTOR_LOW_SPEED_LOSE_STEP
* 5 ERROR_MOTOR_STALL
* 6 ERROR_HARDWARE
* 7 ERROR_LOSE_PROPELLER
* 8 ERROR_OVER_CURRENT
*
* speed: -32767 - 32767 rpm
*
* temperature: 0 - 256 celsius degree (if available)
* voltage: 0.00 - 100.00 V (if available)
* current: 0.0 - 200.0 A (if available)
*/
enum ESCBUS_ENUM_ESC_STATUS {
ESC_STATUS_HEALTHY,
ESC_STATUS_WARNING_LOW_VOLTAGE,
ESC_STATUS_WARNING_OVER_HEAT,
ESC_STATUS_ERROR_MOTOR_LOW_SPEED_LOSE_STEP,
ESC_STATUS_ERROR_MOTOR_STALL,
ESC_STATUS_ERROR_HARDWARE,
ESC_STATUS_ERROR_LOSE_PROPELLER,
ESC_STATUS_ERROR_OVER_CURRENT,
ESC_STATUS_ERROR_MOTOR_HIGH_SPEED_LOSE_STEP,
ESC_STATUS_ERROR_LOSE_CMD,
};
enum ESCBUS_ENUM_MESSAGE_ID {
// messages or command to ESC
ESCBUS_MSG_ID_CONFIG_BASIC = 0,
ESCBUS_MSG_ID_CONFIG_FULL,
ESCBUS_MSG_ID_RUN,
ESCBUS_MSG_ID_TUNE,
ESCBUS_MSG_ID_DO_CMD,
// messages from ESC
ESCBUS_MSG_ID_REQUEST_INFO,
ESCBUS_MSG_ID_CONFIG_INFO_BASIC, // simple configuration info for request from flight controller
ESCBUS_MSG_ID_CONFIG_INFO_FULL, // full configuration info for request from host such as computer
ESCBUS_MSG_ID_RUN_INFO, // feedback message in RUN mode
ESCBUS_MSG_ID_STUDY_INFO, // studied parameters in STUDY mode
ESCBUS_MSG_ID_COMM_INFO, // communication method info
ESCBUS_MSG_ID_DEVICE_INFO, // ESC device info
ESCBUS_MSG_ID_ASSIGNED_ID, // never touch ESCBUS_MSG_ID_MAX_NUM
//boot loader used
PROTO_OK = 0x10, // INSYNC/OK - 'ok' response
PROTO_FAILED = 0x11, // INSYNC/FAILED - 'fail' response
ESCBUS_MSG_ID_BOOT_SYNC = 0x21, // boot loader used
PROTO_GET_DEVICE = 0x22, // get device ID bytes
PROTO_CHIP_ERASE = 0x23, // erase program area and reset program address
PROTO_PROG_MULTI = 0x27, // write bytes at program address and increment
PROTO_GET_CRC = 0x29, // compute & return a CRC
PROTO_BOOT = 0x30, // boot the application
PROTO_GET_SOFTWARE_VERSION = 0x40,
ESCBUS_MSG_ID_MAX_NUM,
};
enum PARSR_ESC_STATE {
HEAD,
LEN,
ID,
DATA,
CRC,
};
/****************************/
}
using namespace ap;
void RCOutput_Tap::_uart_close()
{
if (_uart_fd < 0) {
return;
}
::close(_uart_fd);
_uart_fd = -1;
}
bool RCOutput_Tap::_uart_open()
{
// open uart
_uart_fd = open(HAL_RCOUTPUT_TAP_DEVICE, O_RDWR | O_NOCTTY | O_NONBLOCK);
int termios_state = -1;
if (_uart_fd < 0) {
::fprintf(stderr, "failed to open uart device! %s\n", HAL_RCOUTPUT_TAP_DEVICE);
return -1;
}
// set baud rate
int speed = 250000;
struct termios uart_config;
tcgetattr(_uart_fd, &uart_config);
// clear ONLCR flag (which appends a CR for every LF)
uart_config.c_oflag &= ~ONLCR;
// set baud rate
if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) {
::fprintf(stderr, "failed to set baudrate for %s: %d\n",
HAL_RCOUTPUT_TAP_DEVICE, termios_state);
_uart_close();
return false;
}
if ((termios_state = tcsetattr(_uart_fd, TCSANOW, &uart_config)) < 0) {
fprintf(stderr, "tcsetattr failed for %s\n", HAL_RCOUTPUT_TAP_DEVICE);
_uart_close();
return false;
}
return true;
}
void RCOutput_Tap::init()
{
_perf_rcout = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "APM_rcout");
if (!_uart_open()) {
AP_HAL::panic("Unable to open " HAL_RCOUTPUT_TAP_DEVICE);
return;
}
uint32_t now = AP_HAL::millis();
if (now < MIN_BOOT_TIME_MSEC) {
hal.scheduler->delay(MIN_BOOT_TIME_MSEC - now);
}
/* Issue Basic Config */
EscPacket packet = {0xfe, sizeof(ConfigInfoBasicRequest), ESCBUS_MSG_ID_CONFIG_BASIC};
ConfigInfoBasicRequest &config = packet.d.reqConfigInfoBasic;
memset(&config, 0, sizeof(ConfigInfoBasicRequest));
config.maxChannelInUse = _channels_count;
config.controlMode = 1;
/* Assign the id's to the ESCs to match the mux */
for (uint8_t phy_chan_index = 0; phy_chan_index < _channels_count; phy_chan_index++) {
config.channelMapTable[phy_chan_index] = device_mux_map[phy_chan_index] & ESC_CHANNEL_MAP_CHANNEL;
config.channelMapTable[phy_chan_index] |= (device_dir_map[phy_chan_index] << 4) & ESC_CHANNEL_MAP_RUNNING_DIRECTION;
}
config.maxChannelValue = RPMMAX;
config.minChannelValue = RPMMIN;
int ret = _send_packet(packet);
if (ret < 0) {
_uart_close();
AP_HAL::panic("Unable to send configuration to " HAL_RCOUTPUT_TAP_DEVICE);
return;
}
/*
* To Unlock the ESC from the Power up state we need to issue 10
* ESCBUS_MSG_ID_RUN request with all the values 0;
*/
EscPacket unlock_packet = {0xfe, _channels_count, ESCBUS_MSG_ID_RUN};
unlock_packet.len *= sizeof(unlock_packet.d.reqRun.value[0]);
memset(unlock_packet.d.bytes, 0, sizeof(packet.d.bytes));
for (uint8_t i = 0; i < 10; i++) {
_send_packet(unlock_packet);
/* Min Packet to Packet time is 1 Ms so use 2 */
hal.scheduler->delay(2);
}
}
int RCOutput_Tap::_send_packet(EscPacket &packet)
{
int packet_len = _crc_packet(packet);
int ret = ::write(_uart_fd, &packet.head, packet_len);
if (ret != packet_len) {
debug("TX ERROR: ret: %d, errno: %d", ret, errno);
}
return ret;
}
uint8_t RCOutput_Tap::_crc8_esc(uint8_t *p, uint8_t len)
{
uint8_t crc = 0;
for (uint8_t i = 0; i < len; i++) {
crc = crcTable[crc ^ *p++];
}
return crc;
}
uint8_t RCOutput_Tap::_crc_packet(EscPacket &p)
{
/* Calculate the crc over Len,ID,data */
p.d.bytes[p.len] = _crc8_esc(&p.len, p.len + 2);
return p.len + ESC_PACKET_DATA_OFFSET + 1;
}
/*
set output frequency
*/
void RCOutput_Tap::set_freq(uint32_t chmask, uint16_t freq_hz)
{
}
uint16_t RCOutput_Tap::get_freq(uint8_t ch)
{
return 400;
}
void RCOutput_Tap::enable_ch(uint8_t ch)
{
if (ch >= MAX_MOTORS) {
return;
}
_enabled_channels |= (1U << ch);
}
void RCOutput_Tap::disable_ch(uint8_t ch)
{
if (ch >= MAX_MOTORS) {
return;
}
_enabled_channels &= ~(1U << ch);
}
void RCOutput_Tap::write(uint8_t ch, uint16_t period_us)
{
if (ch >= MAX_MOTORS) {
return;
}
if (!(_enabled_channels & (1U << ch))) {
// not enabled
return;
}
_period[ch] = period_us;
if (!_corking) {
push();
}
}
uint16_t RCOutput_Tap::read(uint8_t ch)
{
if (ch >= MAX_MOTORS) {
return 0;
}
return _period[ch];
}
void RCOutput_Tap::read(uint16_t *period_us, uint8_t len)
{
for (uint8_t i = 0; i < len; i++) {
period_us[i] = read(i);
}
}
void RCOutput_Tap::cork()
{
_corking = true;
}
void RCOutput_Tap::push()
{
_corking = false;
hal.util->perf_begin(_perf_rcout);
uint16_t out[TAP_ESC_MAX_MOTOR_NUM];
uint8_t motor_cnt = _channels_count;
uint8_t motor_mapping[] = {
[0] = 2,
[1] = 1,
[2] = 0,
[3] = 3,
};
// map from the RPM range to 0 - 100% duty cycle for the ESCs
for (uint8_t i = 0; i < motor_cnt; i++) {
uint16_t *val = &out[motor_mapping[i]];
if (!(_enabled_channels & (1U << i))) {
*val = RPMSTOPPED;
} else if (_period[i] < _esc_pwm_min) {
*val = RPMSTOPPED;
} else if (_period[i] >= _esc_pwm_max) {
*val = RPMMAX;
} else {
float period_us = constrain_int16(_period[i], _esc_pwm_min, _esc_pwm_max);
/*
* Map to [ RPMSTOPPED, RPMMAX ] range rather than
* [ RPMMIN, RPMMAX ] because AP_Motors will send us _esc_pwm_min
* when it's disarmed
*/
float rpm = (period_us - _esc_pwm_min)/(_esc_pwm_max - _esc_pwm_min)
* (RPMMAX - RPMSTOPPED) + RPMSTOPPED;
*val = (uint16_t) rpm;
}
}
for (uint8_t i = motor_cnt; i < TAP_ESC_MAX_MOTOR_NUM; i++) {
out[i] = RPMSTOPPED;
}
/*
* Value packet format, little endian
*
* | 15 | 14 | 13 | 12 | 11 | 10 | 11 | 12 | 11 | 10 ...... 0 |
* --------------------------------------------------------------
* | -- | -- | -- | -- | REV | FEN | BL | GL | RL | RPM value |
*
* RPM value: [ RPMMIN, RPMMAX ]
* RL: LED1
* GL: LED2 (ESC may have only one LED that works, independent of the color)
* BL: LED3
* FEN: Feedback enable
* REV: Reverse direction
*/
// TODO: enable feedback from 1 ESC and read data back
#if 0
out[_next_channel_reply] |= RUN_FEEDBACK_ENABLE_MASK;
#endif
EscPacket packet = {0xfe, _channels_count, ESCBUS_MSG_ID_RUN};
packet.len *= sizeof(packet.d.reqRun.value[0]);
for (uint8_t i = 0; i < _channels_count; i++) {
packet.d.reqRun.value[i] = out[i] & RUN_CHANNEL_VALUE_MASK;
}
int ret = _send_packet(packet);
if (ret < 1) {
debug("TX ERROR: ret: %d, errno: %d", ret, errno);
}
_next_channel_reply = (_next_channel_reply + 1) % _channels_count;
hal.util->perf_end(_perf_rcout);
}
#endif