ardupilot/libraries/AP_Compass/Compass_learn.cpp
Andrew Tridgell 57a3bc1397 AP_Compass: new compass learning system
this learns compass offsets using magnetic tables and compass
observations
2018-02-08 17:36:33 +11:00

204 lines
6.4 KiB
C++

#include <AP_Math/AP_Math.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_Declination/AP_Declination.h>
#include <DataFlash/DataFlash.h>
#include "Compass_learn.h"
#include <stdio.h>
extern const AP_HAL::HAL &hal;
// constructor
CompassLearn::CompassLearn(AP_AHRS &_ahrs, Compass &_compass) :
ahrs(_ahrs),
compass(_compass)
{
}
/*
update when new compass sample available
*/
void CompassLearn::update(void)
{
if (converged || compass.get_learn_type() != Compass::LEARN_INFLIGHT ||
!hal.util->get_soft_armed() || ahrs.get_time_flying_ms() < 3000) {
// only learn when flying and with enough time to be clear of
// the ground
return;
}
if (!have_earth_field) {
Location loc;
if (!ahrs.get_position(loc)) {
// need to wait till we have a global position
return;
}
// setup the expected earth field at this location
float declination_deg=0, inclination_deg=0, intensity_gauss=0;
AP_Declination::get_mag_field_ef(loc.lat*1.0e-7, loc.lng*1.0e-7, intensity_gauss, declination_deg, inclination_deg);
// create earth field
mag_ef = Vector3f(intensity_gauss*1000, 0.0, 0.0);
Matrix3f R;
R.from_euler(0.0f, -ToRad(inclination_deg), ToRad(declination_deg));
mag_ef = R * mag_ef;
sem = hal.util->new_semaphore();
have_earth_field = true;
// form eliptical correction matrix and invert it. This is
// needed to remove the effects of the eliptical correction
// when calculating new offsets
const Vector3f &diagonals = compass.get_diagonals(0);
const Vector3f &offdiagonals = compass.get_offdiagonals(0);
mat = Matrix3f(
diagonals.x, offdiagonals.x, offdiagonals.y,
offdiagonals.x, diagonals.y, offdiagonals.z,
offdiagonals.y, offdiagonals.z, diagonals.z
);
if (!mat.invert()) {
// if we can't invert, use the identity matrix
mat.identity();
}
// set initial error to field intensity
for (uint16_t i=0; i<num_sectors; i++) {
errors[i] = intensity_gauss*1000;
}
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&CompassLearn::io_timer, void));
}
if (sample_available) {
// last sample still being processed by IO thread
return;
}
Vector3f field = compass.get_field(0);
Vector3f field_change = field - last_field;
if (field_change.length() < min_field_change) {
return;
}
if (sem->take_nonblocking()) {
// give a sample to the backend to process
new_sample.field = field;
new_sample.offsets = compass.get_offsets(0);
new_sample.attitude = Vector3f(ahrs.roll, ahrs.pitch, ahrs.yaw);
sample_available = true;
last_field = field;
num_samples++;
sem->give();
}
if (sample_available) {
DataFlash_Class::instance()->Log_Write("COFS", "TimeUS,OfsX,OfsY,OfsZ,Var,Yaw,WVar,N", "QffffffI",
AP_HAL::micros64(),
best_offsets.x,
best_offsets.y,
best_offsets.z,
best_error,
best_yaw_deg,
worst_error,
num_samples);
}
if (!converged && sem->take_nonblocking()) {
// stop updating the offsets once converged
compass.set_offsets(0, best_offsets);
if (num_samples > 30 && best_error < 50 && worst_error > 65) {
// set the offsets and enable compass for EKF use. Let the
// EKF learn the remaining compass offset error
compass.save_offsets(0);
compass.set_use_for_yaw(0, true);
compass.set_learn_type(Compass::LEARN_EKF, true);
converged = true;
}
sem->give();
}
}
/*
we run the math intensive calculations in the IO thread
*/
void CompassLearn::io_timer(void)
{
if (!sample_available) {
return;
}
struct sample s;
if (!sem->take_nonblocking()) {
return;
}
s = new_sample;
sample_available = false;
sem->give();
process_sample(s);
}
/*
process a new compass sample
*/
void CompassLearn::process_sample(const struct sample &s)
{
uint16_t besti = 0;
float bestv = 0, worstv=0;
/*
we run through the 72 possible yaw error values, and for each
one we calculate a value for the compass offsets if that yaw
error is correct.
*/
for (uint16_t i=0; i<num_sectors; i++) {
float yaw_err_deg = i*(360/num_sectors);
// form rotation matrix for the euler attitude
Matrix3f dcm;
dcm.from_euler(s.attitude.x, s.attitude.y, wrap_2PI(s.attitude.z + radians(yaw_err_deg)));
// calculate the field we would expect to get if this yaw error is correct
Vector3f expected_field = dcm.transposed() * mag_ef;
// calculate a value for the compass offsets for this yaw error
Vector3f v1 = mat * s.field;
Vector3f v2 = mat * expected_field;
Vector3f offsets = (v2 - v1) + s.offsets;
float delta = (offsets - predicted_offsets[i]).length();
if (num_samples == 1) {
predicted_offsets[i] = offsets;
} else {
// lowpass the predicted offsets and the error
const float learn_rate = 0.92;
predicted_offsets[i] = predicted_offsets[i] * learn_rate + offsets * (1-learn_rate);
errors[i] = errors[i] * learn_rate + delta * (1-learn_rate);
}
// keep track of the current best prediction
if (i == 0 || errors[i] < bestv) {
besti = i;
bestv = errors[i];
}
// also keep the worst error. This is used as part of the convergence test
if (i == 0 || errors[i] > worstv) {
worstv = errors[i];
}
}
if (sem->take_nonblocking()) {
// pass the current estimate to the front-end
best_offsets = predicted_offsets[besti];
best_error = bestv;
worst_error = worstv;
best_yaw_deg = wrap_360(degrees(s.attitude.z) + besti * (360/num_sectors));
sem->give();
}
}