mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 19:08:29 -04:00
1121 lines
39 KiB
C++
1121 lines
39 KiB
C++
#include "Plane.h"
|
|
|
|
/********************************************************************************/
|
|
// Command Event Handlers
|
|
/********************************************************************************/
|
|
bool Plane::start_command(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
// default to non-VTOL loiter
|
|
auto_state.vtol_loiter = false;
|
|
|
|
// log when new commands start
|
|
if (should_log(MASK_LOG_CMD)) {
|
|
logger.Write_Mission_Cmd(mission, cmd);
|
|
}
|
|
|
|
// special handling for nav vs non-nav commands
|
|
if (AP_Mission::is_nav_cmd(cmd)) {
|
|
// set land_complete to false to stop us zeroing the throttle
|
|
auto_state.sink_rate = 0;
|
|
|
|
// set takeoff_complete to true so we don't add extra elevator
|
|
// except in a takeoff
|
|
auto_state.takeoff_complete = true;
|
|
|
|
// start non-idle
|
|
auto_state.idle_mode = false;
|
|
|
|
nav_controller->set_data_is_stale();
|
|
|
|
// reset loiter start time. New command is a new loiter
|
|
loiter.start_time_ms = 0;
|
|
|
|
AP_Mission::Mission_Command next_nav_cmd;
|
|
const uint16_t next_index = mission.get_current_nav_index() + 1;
|
|
auto_state.wp_is_land_approach = mission.get_next_nav_cmd(next_index, next_nav_cmd) && (next_nav_cmd.id == MAV_CMD_NAV_LAND) &&
|
|
!quadplane.is_vtol_land(next_nav_cmd.id);
|
|
}
|
|
|
|
switch(cmd.id) {
|
|
|
|
case MAV_CMD_NAV_TAKEOFF:
|
|
crash_state.is_crashed = false;
|
|
if (quadplane.is_vtol_takeoff(cmd.id)) {
|
|
return quadplane.do_vtol_takeoff(cmd);
|
|
}
|
|
do_takeoff(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint
|
|
do_nav_wp(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_LAND: // LAND to Waypoint
|
|
if (quadplane.is_vtol_land(cmd.id)) {
|
|
crash_state.is_crashed = false;
|
|
return quadplane.do_vtol_land(cmd);
|
|
}
|
|
do_land(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely
|
|
do_loiter_unlimited(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_LOITER_TURNS: // Loiter N Times
|
|
do_loiter_turns(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_LOITER_TIME:
|
|
do_loiter_time(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_LOITER_TO_ALT:
|
|
do_loiter_to_alt(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
|
|
set_mode(mode_rtl, ModeReason::UNKNOWN);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT:
|
|
do_continue_and_change_alt(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_ALTITUDE_WAIT:
|
|
do_altitude_wait(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_NAV_VTOL_TAKEOFF:
|
|
crash_state.is_crashed = false;
|
|
return quadplane.do_vtol_takeoff(cmd);
|
|
|
|
case MAV_CMD_NAV_VTOL_LAND:
|
|
if (quadplane.options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH) {
|
|
// the user wants to approach the landing in a fixed wing flight mode
|
|
// the waypoint will be used as a loiter_to_alt
|
|
// after which point the plane will compute the optimal into the wind direction
|
|
// and fly in on that direction towards the landing waypoint
|
|
// it will then transition to VTOL and do a normal quadplane landing
|
|
do_landing_vtol_approach(cmd);
|
|
break;
|
|
} else {
|
|
return quadplane.do_vtol_land(cmd);
|
|
}
|
|
|
|
// Conditional commands
|
|
|
|
case MAV_CMD_CONDITION_DELAY:
|
|
do_wait_delay(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_CONDITION_DISTANCE:
|
|
do_within_distance(cmd);
|
|
break;
|
|
|
|
// Do commands
|
|
|
|
case MAV_CMD_DO_CHANGE_SPEED:
|
|
do_change_speed(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_DO_SET_HOME:
|
|
do_set_home(cmd);
|
|
break;
|
|
|
|
case MAV_CMD_DO_INVERTED_FLIGHT:
|
|
if (cmd.p1 == 0 || cmd.p1 == 1) {
|
|
auto_state.inverted_flight = (bool)cmd.p1;
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Set inverted %u", cmd.p1);
|
|
}
|
|
break;
|
|
|
|
case MAV_CMD_DO_LAND_START:
|
|
break;
|
|
|
|
case MAV_CMD_DO_FENCE_ENABLE:
|
|
#if GEOFENCE_ENABLED == ENABLED
|
|
if (cmd.p1 != 2) {
|
|
if (!geofence_set_enabled((bool) cmd.p1)) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Unable to set fence. Enabled state to %u", cmd.p1);
|
|
} else {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Set fence enabled state to %u", cmd.p1);
|
|
}
|
|
} else { //commanding to only disable floor
|
|
if (! geofence_set_floor_enabled(false)) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Unable to disable fence floor");
|
|
} else {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Fence floor disabled");
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case MAV_CMD_DO_AUTOTUNE_ENABLE:
|
|
autotune_enable(cmd.p1);
|
|
break;
|
|
|
|
#if MOUNT == ENABLED
|
|
// Sets the region of interest (ROI) for a sensor set or the
|
|
// vehicle itself. This can then be used by the vehicles control
|
|
// system to control the vehicle attitude and the attitude of various
|
|
// devices such as cameras.
|
|
// |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z|
|
|
case MAV_CMD_DO_SET_ROI:
|
|
if (cmd.content.location.alt == 0 && cmd.content.location.lat == 0 && cmd.content.location.lng == 0) {
|
|
// switch off the camera tracking if enabled
|
|
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
|
|
camera_mount.set_mode_to_default();
|
|
}
|
|
} else {
|
|
// set mount's target location
|
|
camera_mount.set_roi_target(cmd.content.location);
|
|
}
|
|
break;
|
|
|
|
case MAV_CMD_DO_MOUNT_CONTROL: // 205
|
|
// point the camera to a specified angle
|
|
camera_mount.set_angle_targets(cmd.content.mount_control.roll,
|
|
cmd.content.mount_control.pitch,
|
|
cmd.content.mount_control.yaw);
|
|
break;
|
|
#endif
|
|
|
|
case MAV_CMD_DO_VTOL_TRANSITION:
|
|
plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)cmd.content.do_vtol_transition.target_state);
|
|
break;
|
|
|
|
case MAV_CMD_DO_ENGINE_CONTROL:
|
|
plane.g2.ice_control.engine_control(cmd.content.do_engine_control.start_control,
|
|
cmd.content.do_engine_control.cold_start,
|
|
cmd.content.do_engine_control.height_delay_cm*0.01f);
|
|
break;
|
|
|
|
default:
|
|
// unable to use the command, allow the vehicle to try the next command
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
Verify command Handlers
|
|
|
|
Each type of mission element has a "verify" operation. The verify
|
|
operation returns true when the mission element has completed and we
|
|
should move onto the next mission element.
|
|
Return true if we do not recognize the command so that we move on to the next command
|
|
*******************************************************************************/
|
|
|
|
bool Plane::verify_command(const AP_Mission::Mission_Command& cmd) // Returns true if command complete
|
|
{
|
|
switch(cmd.id) {
|
|
|
|
case MAV_CMD_NAV_TAKEOFF:
|
|
if (quadplane.is_vtol_takeoff(cmd.id)) {
|
|
return quadplane.verify_vtol_takeoff(cmd);
|
|
}
|
|
return verify_takeoff();
|
|
|
|
case MAV_CMD_NAV_WAYPOINT:
|
|
return verify_nav_wp(cmd);
|
|
|
|
case MAV_CMD_NAV_LAND:
|
|
if (quadplane.is_vtol_land(cmd.id)) {
|
|
return quadplane.verify_vtol_land();
|
|
}
|
|
if (flight_stage == AP_Vehicle::FixedWing::FlightStage::FLIGHT_ABORT_LAND) {
|
|
return landing.verify_abort_landing(prev_WP_loc, next_WP_loc, current_loc, auto_state.takeoff_altitude_rel_cm, throttle_suppressed);
|
|
|
|
} else {
|
|
// use rangefinder to correct if possible
|
|
float height = height_above_target() - rangefinder_correction();
|
|
// for flare calculations we don't want to use the terrain
|
|
// correction as otherwise we will flare early on rising
|
|
// ground
|
|
height -= auto_state.terrain_correction;
|
|
return landing.verify_land(prev_WP_loc, next_WP_loc, current_loc,
|
|
height, auto_state.sink_rate, auto_state.wp_proportion, auto_state.last_flying_ms, arming.is_armed(), is_flying(), rangefinder_state.in_range);
|
|
}
|
|
|
|
case MAV_CMD_NAV_LOITER_UNLIM:
|
|
return verify_loiter_unlim(cmd);
|
|
|
|
case MAV_CMD_NAV_LOITER_TURNS:
|
|
return verify_loiter_turns(cmd);
|
|
|
|
case MAV_CMD_NAV_LOITER_TIME:
|
|
return verify_loiter_time();
|
|
|
|
case MAV_CMD_NAV_LOITER_TO_ALT:
|
|
return verify_loiter_to_alt(cmd);
|
|
|
|
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
|
|
return verify_RTL();
|
|
|
|
case MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT:
|
|
return verify_continue_and_change_alt();
|
|
|
|
case MAV_CMD_NAV_ALTITUDE_WAIT:
|
|
return verify_altitude_wait(cmd);
|
|
|
|
case MAV_CMD_NAV_VTOL_TAKEOFF:
|
|
return quadplane.verify_vtol_takeoff(cmd);
|
|
|
|
case MAV_CMD_NAV_VTOL_LAND:
|
|
if ((quadplane.options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH) && !verify_landing_vtol_approach(cmd)) {
|
|
// verify_landing_vtol_approach will return true once we have completed the approach,
|
|
// in which case we fall over to normal vtol landing code
|
|
return false;
|
|
} else {
|
|
return quadplane.verify_vtol_land();
|
|
}
|
|
|
|
// Conditional commands
|
|
|
|
case MAV_CMD_CONDITION_DELAY:
|
|
return verify_wait_delay();
|
|
|
|
case MAV_CMD_CONDITION_DISTANCE:
|
|
return verify_within_distance();
|
|
|
|
// do commands (always return true)
|
|
case MAV_CMD_DO_CHANGE_SPEED:
|
|
case MAV_CMD_DO_SET_HOME:
|
|
case MAV_CMD_DO_INVERTED_FLIGHT:
|
|
case MAV_CMD_DO_LAND_START:
|
|
case MAV_CMD_DO_FENCE_ENABLE:
|
|
case MAV_CMD_DO_AUTOTUNE_ENABLE:
|
|
case MAV_CMD_DO_CONTROL_VIDEO:
|
|
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
|
|
case MAV_CMD_DO_SET_ROI:
|
|
case MAV_CMD_DO_MOUNT_CONTROL:
|
|
case MAV_CMD_DO_VTOL_TRANSITION:
|
|
case MAV_CMD_DO_ENGINE_CONTROL:
|
|
return true;
|
|
|
|
default:
|
|
// error message
|
|
gcs().send_text(MAV_SEVERITY_WARNING,"Skipping invalid cmd #%i",cmd.id);
|
|
// return true if we do not recognize the command so that we move on to the next command
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/********************************************************************************/
|
|
// Nav (Must) commands
|
|
/********************************************************************************/
|
|
|
|
void Plane::do_RTL(int32_t rtl_altitude)
|
|
{
|
|
auto_state.next_wp_crosstrack = false;
|
|
auto_state.crosstrack = false;
|
|
prev_WP_loc = current_loc;
|
|
next_WP_loc = rally.calc_best_rally_or_home_location(current_loc, rtl_altitude);
|
|
setup_terrain_target_alt(next_WP_loc);
|
|
set_target_altitude_location(next_WP_loc);
|
|
|
|
if (aparm.loiter_radius < 0) {
|
|
loiter.direction = -1;
|
|
} else {
|
|
loiter.direction = 1;
|
|
}
|
|
|
|
setup_glide_slope();
|
|
setup_turn_angle();
|
|
|
|
logger.Write_Mode(control_mode->mode_number(), control_mode_reason);
|
|
}
|
|
|
|
/*
|
|
start a NAV_TAKEOFF command
|
|
*/
|
|
void Plane::do_takeoff(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
prev_WP_loc = current_loc;
|
|
set_next_WP(cmd.content.location);
|
|
// pitch in deg, airspeed m/s, throttle %, track WP 1 or 0
|
|
auto_state.takeoff_pitch_cd = (int16_t)cmd.p1 * 100;
|
|
if (auto_state.takeoff_pitch_cd <= 0) {
|
|
// if the mission doesn't specify a pitch use 4 degrees
|
|
auto_state.takeoff_pitch_cd = 400;
|
|
}
|
|
auto_state.takeoff_altitude_rel_cm = next_WP_loc.alt - home.alt;
|
|
next_WP_loc.lat = home.lat + 10;
|
|
next_WP_loc.lng = home.lng + 10;
|
|
auto_state.takeoff_speed_time_ms = 0;
|
|
auto_state.takeoff_complete = false; // set flag to use gps ground course during TO. IMU will be doing yaw drift correction
|
|
auto_state.height_below_takeoff_to_level_off_cm = 0;
|
|
// Flag also used to override "on the ground" throttle disable
|
|
|
|
// zero locked course
|
|
steer_state.locked_course_err = 0;
|
|
steer_state.hold_course_cd = -1;
|
|
auto_state.baro_takeoff_alt = barometer.get_altitude();
|
|
}
|
|
|
|
void Plane::do_nav_wp(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
set_next_WP(cmd.content.location);
|
|
}
|
|
|
|
void Plane::do_land(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
set_next_WP(cmd.content.location);
|
|
|
|
// configure abort altitude and pitch
|
|
// if NAV_LAND has an abort altitude then use it, else use last takeoff, else use 50m
|
|
if (cmd.p1 > 0) {
|
|
auto_state.takeoff_altitude_rel_cm = (int16_t)cmd.p1 * 100;
|
|
} else if (auto_state.takeoff_altitude_rel_cm <= 0) {
|
|
auto_state.takeoff_altitude_rel_cm = 3000;
|
|
}
|
|
|
|
if (auto_state.takeoff_pitch_cd <= 0) {
|
|
// If no takeoff command has ever been used, default to a conservative 10deg
|
|
auto_state.takeoff_pitch_cd = 1000;
|
|
}
|
|
|
|
// zero rangefinder state, start to accumulate good samples now
|
|
memset(&rangefinder_state, 0, sizeof(rangefinder_state));
|
|
|
|
landing.do_land(cmd, relative_altitude);
|
|
|
|
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND) {
|
|
// if we were in an abort we need to explicitly move out of the abort state, as it's sticky
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_LAND);
|
|
}
|
|
|
|
#if GEOFENCE_ENABLED == ENABLED
|
|
if (g.fence_autoenable == 1) {
|
|
if (! geofence_set_enabled(false)) {
|
|
gcs().send_text(MAV_SEVERITY_NOTICE, "Disable fence failed (autodisable)");
|
|
} else {
|
|
gcs().send_text(MAV_SEVERITY_NOTICE, "Fence disabled (autodisable)");
|
|
}
|
|
} else if (g.fence_autoenable == 2) {
|
|
if (! geofence_set_floor_enabled(false)) {
|
|
gcs().send_text(MAV_SEVERITY_NOTICE, "Disable fence floor failed (autodisable)");
|
|
} else {
|
|
gcs().send_text(MAV_SEVERITY_NOTICE, "Fence floor disabled (auto disable)");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Plane::do_landing_vtol_approach(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
//set target alt
|
|
Location loc = cmd.content.location;
|
|
loc.sanitize(current_loc);
|
|
set_next_WP(loc);
|
|
|
|
// only set the direction if the quadplane landing radius override is not 0
|
|
// if it's 0 update_loiter will manage the direction for us when we hand it
|
|
// 0 later in the controller
|
|
if (is_negative(quadplane.fw_land_approach_radius)) {
|
|
loiter.direction = -1;
|
|
} else if (is_positive(quadplane.fw_land_approach_radius)) {
|
|
loiter.direction = 1;
|
|
}
|
|
|
|
vtol_approach_s.approach_stage = LOITER_TO_ALT;
|
|
}
|
|
|
|
void Plane::loiter_set_direction_wp(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
if (cmd.content.location.loiter_ccw) {
|
|
loiter.direction = -1;
|
|
} else {
|
|
loiter.direction = 1;
|
|
}
|
|
}
|
|
|
|
void Plane::do_loiter_unlimited(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
Location cmdloc = cmd.content.location;
|
|
cmdloc.sanitize(current_loc);
|
|
set_next_WP(cmdloc);
|
|
loiter_set_direction_wp(cmd);
|
|
}
|
|
|
|
void Plane::do_loiter_turns(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
Location cmdloc = cmd.content.location;
|
|
cmdloc.sanitize(current_loc);
|
|
set_next_WP(cmdloc);
|
|
loiter_set_direction_wp(cmd);
|
|
|
|
loiter.total_cd = (uint32_t)(LOWBYTE(cmd.p1)) * 36000UL;
|
|
condition_value = 1; // used to signify primary turns goal not yet met
|
|
}
|
|
|
|
void Plane::do_loiter_time(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
Location cmdloc = cmd.content.location;
|
|
cmdloc.sanitize(current_loc);
|
|
set_next_WP(cmdloc);
|
|
loiter_set_direction_wp(cmd);
|
|
|
|
// we set start_time_ms when we reach the waypoint
|
|
loiter.time_max_ms = cmd.p1 * (uint32_t)1000; // convert sec to ms
|
|
condition_value = 1; // used to signify primary time goal not yet met
|
|
}
|
|
|
|
void Plane::do_continue_and_change_alt(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
// select heading method. Either mission, gps bearing projection or yaw based
|
|
// If prev_WP_loc and next_WP_loc are different then an accurate wp based bearing can
|
|
// be computed. However, if we had just changed modes before this, such as an aborted landing
|
|
// via mode change, the prev and next wps are the same.
|
|
float bearing;
|
|
if (!prev_WP_loc.same_latlon_as(next_WP_loc)) {
|
|
// use waypoint based bearing, this is the usual case
|
|
steer_state.hold_course_cd = -1;
|
|
} else if (AP::gps().status() >= AP_GPS::GPS_OK_FIX_2D) {
|
|
// use gps ground course based bearing hold
|
|
steer_state.hold_course_cd = -1;
|
|
bearing = AP::gps().ground_course_cd() * 0.01f;
|
|
next_WP_loc.offset_bearing(bearing, 1000); // push it out 1km
|
|
} else {
|
|
// use yaw based bearing hold
|
|
steer_state.hold_course_cd = wrap_360_cd(ahrs.yaw_sensor);
|
|
bearing = ahrs.yaw_sensor * 0.01f;
|
|
next_WP_loc.offset_bearing(bearing, 1000); // push it out 1km
|
|
}
|
|
|
|
next_WP_loc.alt = cmd.content.location.alt + home.alt;
|
|
condition_value = cmd.p1;
|
|
reset_offset_altitude();
|
|
}
|
|
|
|
void Plane::do_altitude_wait(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
// set all servos to trim until we reach altitude or descent speed
|
|
auto_state.idle_mode = true;
|
|
}
|
|
|
|
void Plane::do_loiter_to_alt(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
//set target alt
|
|
Location loc = cmd.content.location;
|
|
loc.sanitize(current_loc);
|
|
set_next_WP(loc);
|
|
loiter_set_direction_wp(cmd);
|
|
|
|
// init to 0, set to 1 when altitude is reached
|
|
condition_value = 0;
|
|
}
|
|
|
|
/********************************************************************************/
|
|
// Verify Nav (Must) commands
|
|
/********************************************************************************/
|
|
bool Plane::verify_takeoff()
|
|
{
|
|
if (ahrs.yaw_initialised() && steer_state.hold_course_cd == -1) {
|
|
const float min_gps_speed = 5;
|
|
if (auto_state.takeoff_speed_time_ms == 0 &&
|
|
gps.status() >= AP_GPS::GPS_OK_FIX_3D &&
|
|
gps.ground_speed() > min_gps_speed &&
|
|
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
|
|
auto_state.takeoff_speed_time_ms = millis();
|
|
}
|
|
if (auto_state.takeoff_speed_time_ms != 0 &&
|
|
millis() - auto_state.takeoff_speed_time_ms >= 2000) {
|
|
// once we reach sufficient speed for good GPS course
|
|
// estimation we save our current GPS ground course
|
|
// corrected for summed yaw to set the take off
|
|
// course. This keeps wings level until we are ready to
|
|
// rotate, and also allows us to cope with arbitrary
|
|
// compass errors for auto takeoff
|
|
float takeoff_course = wrap_PI(radians(gps.ground_course_cd()*0.01f)) - steer_state.locked_course_err;
|
|
takeoff_course = wrap_PI(takeoff_course);
|
|
steer_state.hold_course_cd = wrap_360_cd(degrees(takeoff_course)*100);
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Holding course %d at %.1fm/s (%.1f)",
|
|
(int)steer_state.hold_course_cd,
|
|
(double)gps.ground_speed(),
|
|
(double)degrees(steer_state.locked_course_err));
|
|
}
|
|
}
|
|
|
|
if (steer_state.hold_course_cd != -1) {
|
|
// call navigation controller for heading hold
|
|
nav_controller->update_heading_hold(steer_state.hold_course_cd);
|
|
} else {
|
|
nav_controller->update_level_flight();
|
|
}
|
|
|
|
// check for optional takeoff timeout
|
|
if (takeoff_state.start_time_ms != 0 && g2.takeoff_timeout > 0) {
|
|
const float ground_speed = gps.ground_speed();
|
|
const float takeoff_min_ground_speed = 4;
|
|
if (!hal.util->get_soft_armed()) {
|
|
return false;
|
|
}
|
|
if (ground_speed >= takeoff_min_ground_speed) {
|
|
takeoff_state.start_time_ms = 0;
|
|
} else {
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - takeoff_state.start_time_ms > (uint32_t)(1000U * g2.takeoff_timeout)) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Takeoff timeout at %.1f m/s", ground_speed);
|
|
plane.arming.disarm();
|
|
mission.reset();
|
|
}
|
|
}
|
|
}
|
|
|
|
// see if we have reached takeoff altitude
|
|
int32_t relative_alt_cm = adjusted_relative_altitude_cm();
|
|
if (relative_alt_cm > auto_state.takeoff_altitude_rel_cm) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Takeoff complete at %.2fm",
|
|
(double)(relative_alt_cm*0.01f));
|
|
steer_state.hold_course_cd = -1;
|
|
auto_state.takeoff_complete = true;
|
|
next_WP_loc = prev_WP_loc = current_loc;
|
|
|
|
plane.complete_auto_takeoff();
|
|
|
|
// don't cross-track on completion of takeoff, as otherwise we
|
|
// can end up doing too sharp a turn
|
|
auto_state.next_wp_crosstrack = false;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
update navigation for normal mission waypoints. Return true when the
|
|
waypoint is complete
|
|
*/
|
|
bool Plane::verify_nav_wp(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
steer_state.hold_course_cd = -1;
|
|
|
|
// depending on the pass by flag either go to waypoint in regular manner or
|
|
// fly past it for set distance along the line of waypoints
|
|
Location flex_next_WP_loc = next_WP_loc;
|
|
|
|
uint8_t cmd_passby = HIGHBYTE(cmd.p1); // distance in meters to pass beyond the wp
|
|
uint8_t cmd_acceptance_distance = LOWBYTE(cmd.p1); // radius in meters to accept reaching the wp
|
|
|
|
if (cmd_passby > 0) {
|
|
float dist = prev_WP_loc.get_distance(flex_next_WP_loc);
|
|
|
|
if (!is_zero(dist)) {
|
|
float factor = (dist + cmd_passby) / dist;
|
|
|
|
flex_next_WP_loc.lat = flex_next_WP_loc.lat + (flex_next_WP_loc.lat - prev_WP_loc.lat) * (factor - 1.0f);
|
|
flex_next_WP_loc.lng = flex_next_WP_loc.lng + (flex_next_WP_loc.lng - prev_WP_loc.lng) * (factor - 1.0f);
|
|
}
|
|
}
|
|
|
|
if (auto_state.crosstrack) {
|
|
nav_controller->update_waypoint(prev_WP_loc, flex_next_WP_loc);
|
|
} else {
|
|
nav_controller->update_waypoint(current_loc, flex_next_WP_loc);
|
|
}
|
|
|
|
// see if the user has specified a maximum distance to waypoint
|
|
// If override with p3 - then this is not used as it will overfly badly
|
|
if (g.waypoint_max_radius > 0 &&
|
|
auto_state.wp_distance > (uint16_t)g.waypoint_max_radius) {
|
|
if (current_loc.past_interval_finish_line(prev_WP_loc, flex_next_WP_loc)) {
|
|
// this is needed to ensure completion of the waypoint
|
|
if (cmd_passby == 0) {
|
|
prev_WP_loc = current_loc;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
float acceptance_distance_m = 0; // default to: if overflown - let it fly up to the point
|
|
if (cmd_acceptance_distance > 0) {
|
|
// allow user to override acceptance radius
|
|
acceptance_distance_m = cmd_acceptance_distance;
|
|
} else if (cmd_passby == 0) {
|
|
acceptance_distance_m = nav_controller->turn_distance(g.waypoint_radius, auto_state.next_turn_angle);
|
|
} else {
|
|
|
|
}
|
|
|
|
if (auto_state.wp_distance <= acceptance_distance_m) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Reached waypoint #%i dist %um",
|
|
(unsigned)mission.get_current_nav_cmd().index,
|
|
(unsigned)current_loc.get_distance(flex_next_WP_loc));
|
|
return true;
|
|
}
|
|
|
|
// have we flown past the waypoint?
|
|
if (current_loc.past_interval_finish_line(prev_WP_loc, flex_next_WP_loc)) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Passed waypoint #%i dist %um",
|
|
(unsigned)mission.get_current_nav_cmd().index,
|
|
(unsigned)current_loc.get_distance(flex_next_WP_loc));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Plane::verify_loiter_unlim(const AP_Mission::Mission_Command &cmd)
|
|
{
|
|
if (cmd.p1 <= 1 && abs(g.rtl_radius) > 1) {
|
|
// if mission radius is 0,1, and rtl_radius is valid, use rtl_radius.
|
|
loiter.direction = (g.rtl_radius < 0) ? -1 : 1;
|
|
update_loiter(abs(g.rtl_radius));
|
|
} else {
|
|
// else use mission radius
|
|
update_loiter(cmd.p1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Plane::verify_loiter_time()
|
|
{
|
|
bool result = false;
|
|
// mission radius is always aparm.loiter_radius
|
|
update_loiter(0);
|
|
|
|
if (loiter.start_time_ms == 0) {
|
|
if (reached_loiter_target() && loiter.sum_cd > 1) {
|
|
// we've reached the target, start the timer
|
|
loiter.start_time_ms = millis();
|
|
}
|
|
} else if (condition_value != 0) {
|
|
// primary goal, loiter time
|
|
if ((millis() - loiter.start_time_ms) > loiter.time_max_ms) {
|
|
// primary goal completed, initialize secondary heading goal
|
|
condition_value = 0;
|
|
result = verify_loiter_heading(true);
|
|
}
|
|
} else {
|
|
// secondary goal, loiter to heading
|
|
result = verify_loiter_heading(false);
|
|
}
|
|
|
|
if (result) {
|
|
gcs().send_text(MAV_SEVERITY_INFO,"Loiter time complete");
|
|
auto_state.vtol_loiter = false;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool Plane::verify_loiter_turns(const AP_Mission::Mission_Command &cmd)
|
|
{
|
|
bool result = false;
|
|
uint16_t radius = HIGHBYTE(cmd.p1);
|
|
update_loiter(radius);
|
|
|
|
// LOITER_TURNS makes no sense as VTOL
|
|
auto_state.vtol_loiter = false;
|
|
|
|
if (condition_value != 0) {
|
|
// primary goal, loiter time
|
|
if (loiter.sum_cd > loiter.total_cd && loiter.sum_cd > 1) {
|
|
// primary goal completed, initialize secondary heading goal
|
|
condition_value = 0;
|
|
result = verify_loiter_heading(true);
|
|
}
|
|
} else {
|
|
// secondary goal, loiter to heading
|
|
result = verify_loiter_heading(false);
|
|
}
|
|
|
|
if (result) {
|
|
gcs().send_text(MAV_SEVERITY_INFO,"Loiter orbits complete");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
verify a LOITER_TO_ALT command. This involves checking we have
|
|
reached both the desired altitude and desired heading. The desired
|
|
altitude only needs to be reached once.
|
|
*/
|
|
bool Plane::verify_loiter_to_alt(const AP_Mission::Mission_Command &cmd)
|
|
{
|
|
bool result = false;
|
|
|
|
update_loiter(cmd.p1);
|
|
|
|
// condition_value == 0 means alt has never been reached
|
|
if (condition_value == 0) {
|
|
// primary goal, loiter to alt
|
|
if (labs(loiter.sum_cd) > 1 && (loiter.reached_target_alt || loiter.unable_to_acheive_target_alt)) {
|
|
// primary goal completed, initialize secondary heading goal
|
|
if (loiter.unable_to_acheive_target_alt) {
|
|
gcs().send_text(MAV_SEVERITY_INFO,"Loiter to alt was stuck at %d", int(current_loc.alt/100));
|
|
}
|
|
|
|
condition_value = 1;
|
|
result = verify_loiter_heading(true);
|
|
}
|
|
} else {
|
|
// secondary goal, loiter to heading
|
|
result = verify_loiter_heading(false);
|
|
}
|
|
|
|
if (result) {
|
|
gcs().send_text(MAV_SEVERITY_INFO,"Loiter to alt complete");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool Plane::verify_RTL()
|
|
{
|
|
if (g.rtl_radius < 0) {
|
|
loiter.direction = -1;
|
|
} else {
|
|
loiter.direction = 1;
|
|
}
|
|
update_loiter(abs(g.rtl_radius));
|
|
if (auto_state.wp_distance <= (uint32_t)MAX(g.waypoint_radius,0) ||
|
|
reached_loiter_target()) {
|
|
gcs().send_text(MAV_SEVERITY_INFO,"Reached RTL location");
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Plane::verify_continue_and_change_alt()
|
|
{
|
|
// is waypoint info not available and heading hold is?
|
|
if (prev_WP_loc.same_latlon_as(next_WP_loc) &&
|
|
steer_state.hold_course_cd != -1) {
|
|
//keep flying the same course with fixed steering heading computed at start if cmd
|
|
nav_controller->update_heading_hold(steer_state.hold_course_cd);
|
|
}
|
|
else {
|
|
// Is the next_WP less than 200 m away?
|
|
if (current_loc.get_distance(next_WP_loc) < 200.0f) {
|
|
//push another 300 m down the line
|
|
int32_t next_wp_bearing_cd = prev_WP_loc.get_bearing_to(next_WP_loc);
|
|
next_WP_loc.offset_bearing(next_wp_bearing_cd * 0.01f, 300.0f);
|
|
}
|
|
|
|
//keep flying the same course
|
|
nav_controller->update_waypoint(prev_WP_loc, next_WP_loc);
|
|
}
|
|
|
|
//climbing?
|
|
if (condition_value == 1 && adjusted_altitude_cm() >= next_WP_loc.alt) {
|
|
return true;
|
|
}
|
|
//descending?
|
|
else if (condition_value == 2 &&
|
|
adjusted_altitude_cm() <= next_WP_loc.alt) {
|
|
return true;
|
|
}
|
|
//don't care if we're climbing or descending
|
|
else if (labs(adjusted_altitude_cm() - next_WP_loc.alt) <= 500) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
see if we have reached altitude or descent speed
|
|
*/
|
|
bool Plane::verify_altitude_wait(const AP_Mission::Mission_Command &cmd)
|
|
{
|
|
if (current_loc.alt > cmd.content.altitude_wait.altitude*100.0f) {
|
|
gcs().send_text(MAV_SEVERITY_INFO,"Reached altitude");
|
|
return true;
|
|
}
|
|
if (auto_state.sink_rate > cmd.content.altitude_wait.descent_rate) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Reached descent rate %.1f m/s", (double)auto_state.sink_rate);
|
|
return true;
|
|
}
|
|
|
|
// if requested, wiggle servos
|
|
if (cmd.content.altitude_wait.wiggle_time != 0) {
|
|
static uint32_t last_wiggle_ms;
|
|
if (auto_state.idle_wiggle_stage == 0 &&
|
|
AP_HAL::millis() - last_wiggle_ms > cmd.content.altitude_wait.wiggle_time*1000) {
|
|
auto_state.idle_wiggle_stage = 1;
|
|
last_wiggle_ms = AP_HAL::millis();
|
|
}
|
|
// idle_wiggle_stage is updated in set_servos_idle()
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/********************************************************************************/
|
|
// Condition (May) commands
|
|
/********************************************************************************/
|
|
|
|
void Plane::do_wait_delay(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
condition_start = millis();
|
|
condition_value = cmd.content.delay.seconds * 1000; // convert seconds to milliseconds
|
|
}
|
|
|
|
void Plane::do_within_distance(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
condition_value = cmd.content.distance.meters;
|
|
}
|
|
|
|
/********************************************************************************/
|
|
// Verify Condition (May) commands
|
|
/********************************************************************************/
|
|
|
|
bool Plane::verify_wait_delay()
|
|
{
|
|
if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) {
|
|
condition_value = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Plane::verify_within_distance()
|
|
{
|
|
if (auto_state.wp_distance < MAX(condition_value,0)) {
|
|
condition_value = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/********************************************************************************/
|
|
// Do (Now) commands
|
|
/********************************************************************************/
|
|
|
|
void Plane::do_loiter_at_location()
|
|
{
|
|
if (aparm.loiter_radius < 0) {
|
|
loiter.direction = -1;
|
|
} else {
|
|
loiter.direction = 1;
|
|
}
|
|
next_WP_loc = current_loc;
|
|
}
|
|
|
|
void Plane::do_change_speed(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
switch (cmd.content.speed.speed_type)
|
|
{
|
|
case 0: // Airspeed
|
|
if (cmd.content.speed.target_ms > 0) {
|
|
aparm.airspeed_cruise_cm.set(cmd.content.speed.target_ms * 100);
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Set airspeed %u m/s", (unsigned)cmd.content.speed.target_ms);
|
|
}
|
|
break;
|
|
case 1: // Ground speed
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Set groundspeed %u", (unsigned)cmd.content.speed.target_ms);
|
|
aparm.min_gndspeed_cm.set(cmd.content.speed.target_ms * 100);
|
|
break;
|
|
}
|
|
|
|
if (cmd.content.speed.throttle_pct > 0 && cmd.content.speed.throttle_pct <= 100) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Set throttle %u", (unsigned)cmd.content.speed.throttle_pct);
|
|
aparm.throttle_cruise.set(cmd.content.speed.throttle_pct);
|
|
}
|
|
}
|
|
|
|
void Plane::do_set_home(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
if (cmd.p1 == 1 && gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
if (!set_home_persistently(gps.location())) {
|
|
// silently ignore error
|
|
}
|
|
} else {
|
|
if (!AP::ahrs().set_home(cmd.content.location)) {
|
|
// silently ignore failure
|
|
}
|
|
}
|
|
}
|
|
|
|
// start_command_callback - callback function called from ap-mission when it begins a new mission command
|
|
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
|
|
bool Plane::start_command_callback(const AP_Mission::Mission_Command &cmd)
|
|
{
|
|
if (control_mode == &mode_auto) {
|
|
return start_command(cmd);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// verify_command_callback - callback function called from ap-mission at 10hz or higher when a command is being run
|
|
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
|
|
bool Plane::verify_command_callback(const AP_Mission::Mission_Command& cmd)
|
|
{
|
|
if (control_mode == &mode_auto) {
|
|
bool cmd_complete = verify_command(cmd);
|
|
|
|
// send message to GCS
|
|
if (cmd_complete) {
|
|
gcs().send_mission_item_reached_message(cmd.index);
|
|
}
|
|
|
|
return cmd_complete;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// exit_mission_callback - callback function called from ap-mission when the mission has completed
|
|
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
|
|
void Plane::exit_mission_callback()
|
|
{
|
|
if (control_mode == &mode_auto) {
|
|
set_mode(mode_rtl, ModeReason::MISSION_END);
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Mission complete, changing mode to RTL");
|
|
}
|
|
}
|
|
|
|
bool Plane::verify_landing_vtol_approach(const AP_Mission::Mission_Command &cmd)
|
|
{
|
|
switch (vtol_approach_s.approach_stage) {
|
|
case LOITER_TO_ALT:
|
|
{
|
|
update_loiter(fabsf(quadplane.fw_land_approach_radius));
|
|
|
|
if (labs(loiter.sum_cd) > 1 && (loiter.reached_target_alt || loiter.unable_to_acheive_target_alt)) {
|
|
Vector3f wind = ahrs.wind_estimate();
|
|
vtol_approach_s.approach_direction_deg = degrees(atan2f(-wind.y, -wind.x));
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Selected an approach path of %.1f", (double)vtol_approach_s.approach_direction_deg);
|
|
vtol_approach_s.approach_stage = ENSURE_RADIUS;
|
|
}
|
|
break;
|
|
}
|
|
case ENSURE_RADIUS:
|
|
{
|
|
float radius;
|
|
if (is_zero(quadplane.fw_land_approach_radius)) {
|
|
radius = aparm.loiter_radius;
|
|
} else {
|
|
radius = quadplane.fw_land_approach_radius;
|
|
}
|
|
const int8_t direction = is_negative(radius) ? -1 : 1;
|
|
radius = fabsf(radius);
|
|
|
|
// validate that the vehicle is at least the expected distance away from the loiter point
|
|
// require an angle total of at least 2 centidegrees, due to special casing of 1 centidegree
|
|
if (((fabsf(cmd.content.location.get_distance(current_loc) - radius) > 5.0f) &&
|
|
(cmd.content.location.get_distance(current_loc) < radius)) ||
|
|
(loiter.sum_cd < 2)) {
|
|
nav_controller->update_loiter(cmd.content.location, radius, direction);
|
|
break;
|
|
}
|
|
vtol_approach_s.approach_stage = WAIT_FOR_BREAKOUT;
|
|
FALLTHROUGH;
|
|
}
|
|
case WAIT_FOR_BREAKOUT:
|
|
{
|
|
float radius = quadplane.fw_land_approach_radius;
|
|
if (is_zero(radius)) {
|
|
radius = aparm.loiter_radius;
|
|
}
|
|
const int8_t direction = is_negative(radius) ? -1 : 1;
|
|
|
|
nav_controller->update_loiter(cmd.content.location, radius, direction);
|
|
|
|
const float breakout_direction_rad = radians(wrap_180(vtol_approach_s.approach_direction_deg + (direction > 0 ? 270 : 90)));
|
|
|
|
// breakout when within 5 degrees of the opposite direction
|
|
if (fabsf(ahrs.yaw - breakout_direction_rad) < radians(5.0f)) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Starting VTOL land approach path");
|
|
vtol_approach_s.approach_stage = APPROACH_LINE;
|
|
set_next_WP(cmd.content.location);
|
|
// fallthrough
|
|
} else {
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
}
|
|
case APPROACH_LINE:
|
|
{
|
|
// project an apporach path
|
|
Location start = cmd.content.location;
|
|
Location end = cmd.content.location;
|
|
|
|
// project a 1km waypoint to either side of the landing location
|
|
start.offset_bearing(vtol_approach_s.approach_direction_deg + 180, 1000);
|
|
end.offset_bearing(vtol_approach_s.approach_direction_deg, 1000);
|
|
|
|
nav_controller->update_waypoint(start, end);
|
|
|
|
// check if we should move on to the next waypoint
|
|
Location breakout_loc = cmd.content.location;
|
|
breakout_loc.offset_bearing(vtol_approach_s.approach_direction_deg + 180, quadplane.stopping_distance());
|
|
if(current_loc.past_interval_finish_line(start, breakout_loc)) {
|
|
vtol_approach_s.approach_stage = VTOL_LANDING;
|
|
quadplane.do_vtol_land(cmd);
|
|
// fallthrough
|
|
} else {
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
}
|
|
case VTOL_LANDING:
|
|
// nothing to do here, we should be into the quadplane landing code
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Plane::verify_loiter_heading(bool init)
|
|
{
|
|
if (quadplane.in_vtol_auto()) {
|
|
// skip heading verify if in VTOL auto
|
|
return true;
|
|
}
|
|
|
|
//Get the lat/lon of next Nav waypoint after this one:
|
|
AP_Mission::Mission_Command next_nav_cmd;
|
|
if (! mission.get_next_nav_cmd(mission.get_current_nav_index() + 1,
|
|
next_nav_cmd)) {
|
|
//no next waypoint to shoot for -- go ahead and break out of loiter
|
|
return true;
|
|
}
|
|
|
|
if (next_WP_loc.get_distance(next_nav_cmd.content.location) < abs(aparm.loiter_radius)) {
|
|
/* Whenever next waypoint is within the loiter radius,
|
|
maintaining loiter would prevent us from ever pointing toward the next waypoint.
|
|
Hence break out of loiter immediately
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
// Bearing in degrees
|
|
int32_t bearing_cd = current_loc.get_bearing_to(next_nav_cmd.content.location);
|
|
|
|
// get current heading.
|
|
int32_t heading_cd = gps.ground_course_cd();
|
|
|
|
int32_t heading_err_cd = wrap_180_cd(bearing_cd - heading_cd);
|
|
|
|
if (init) {
|
|
loiter.sum_cd = 0;
|
|
}
|
|
|
|
/*
|
|
Check to see if the the plane is heading toward the land
|
|
waypoint. We use 20 degrees (+/-10 deg) of margin so that
|
|
we can handle 200 degrees/second of yaw.
|
|
|
|
After every full circle, extend acceptance criteria to ensure
|
|
aircraft will not loop forever in case high winds are forcing
|
|
it beyond 200 deg/sec when passing the desired exit course
|
|
*/
|
|
|
|
// Use integer division to get discrete steps
|
|
int32_t expanded_acceptance = 1000 * (loiter.sum_cd / 36000);
|
|
|
|
if (labs(heading_err_cd) <= 1000 + expanded_acceptance) {
|
|
// Want to head in a straight line from _here_ to the next waypoint instead of center of loiter wp
|
|
|
|
// 0 to xtrack from center of waypoint, 1 to xtrack from tangent exit location
|
|
if (next_WP_loc.loiter_xtrack) {
|
|
next_WP_loc = current_loc;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|