ardupilot/ArduCopter/control_auto.pde

358 lines
11 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* control_auto.pde - init and run calls for auto flight mode
*
* This file contains the implementation for Land, Waypoint navigation and Takeoff from Auto mode
* Command execution code (i.e. command_logic.pde) should:
* a) switch to Auto flight mode with set_mode() function. This will cause auto_init to be called
* b) call one of the three auto initialisation functions: auto_wp_start(), auto_takeoff_start(), auto_land_start()
* c) call one of the verify functions auto_wp_verify(), auto_takeoff_verify, auto_land_verify repeated to check if the command has completed
* The main loop (i.e. fast loop) will call update_flight_modes() which will in turn call auto_run() which, based upon the auto_mode variable will call
* correct auto_wp_run, auto_takeoff_run or auto_land_run to actually implement the feature
*/
/*
* While in the auto flight mode, navigation or do/now commands can be run.
* Code in this file implements the navigation commands
*/
// auto_init - initialise auto controller
static bool auto_init(bool ignore_checks)
{
if ((GPS_ok() && inertial_nav.position_ok() && g.command_total > 1) || ignore_checks) {
// clear the command queues. will be reloaded when "run_autopilot" calls "update_commands" function
init_commands();
return true;
}else{
return false;
}
}
// auto_run - runs the auto controller
// should be called at 100hz or more
// relies on run_autopilot being called at 10hz which handles decision making and non-navigation related commands
static void auto_run()
{
// call the correct auto controller
switch (auto_mode) {
case Auto_TakeOff:
auto_takeoff_run();
break;
case Auto_WP:
auto_wp_run();
break;
case Auto_Land:
auto_land_run();
break;
case Auto_RTL:
auto_rtl_run();
break;
case Auto_Circle:
auto_circle_run();
break;
}
}
// auto_takeoff_start - initialises waypoint controller to implement take-off
static void auto_takeoff_start(float final_alt)
{
auto_mode = Auto_TakeOff;
// initialise wpnav destination
Vector3f target_pos = inertial_nav.get_position();
target_pos.z = final_alt;
wp_nav.set_wp_destination(target_pos);
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
// tell motors to do a slow start
motors.slow_start(true);
}
// auto_takeoff_run - takeoff in auto mode
// called by auto_run at 100hz or more
static void auto_takeoff_run()
{
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed) {
// reset attitude control targets
attitude_control.init_targets();
attitude_control.set_throttle_out(0, false);
// tell motors to do a slow start
motors.slow_start(true);
// To-Do: re-initialise wpnav targets
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
}
// run waypoint controller
wp_nav.update_wpnav();
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control.update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.angleef_rp_rateef_y(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);
}
// auto_wp_start - initialises waypoint controller to implement flying to a particular destination
static void auto_wp_start(const Vector3f& destination)
{
auto_mode = Auto_WP;
// initialise wpnav
wp_nav.set_wp_destination(destination);
// initialise yaw
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
}
// auto_wp_run - runs the auto waypoint controller
// called by auto_run at 100hz or more
static void auto_wp_run()
{
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed) {
// To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off
// (of course it would be better if people just used take-off)
attitude_control.init_targets();
attitude_control.set_throttle_out(0, false);
// tell motors to do a slow start
motors.slow_start(true);
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
if (target_yaw_rate != 0) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// run waypoint controller
wp_nav.update_wpnav();
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control.update_z_controller();
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.angleef_rp_rateef_y(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control.angleef_rpy(wp_nav.get_roll(), wp_nav.get_pitch(), get_auto_heading(),true);
}
}
// auto_land_start - initialises controller to implement a landing
static void auto_land_start()
{
// set target to stopping point
Vector3f stopping_point;
wp_nav.get_loiter_stopping_point_xy(stopping_point);
// call location specific land start function
auto_land_start(stopping_point);
}
// auto_land_start - initialises controller to implement a landing
static void auto_land_start(const Vector3f& destination)
{
auto_mode = Auto_Land;
// initialise loiter target destination
wp_nav.set_loiter_target(destination);
// initialise altitude target to stopping point
pos_control.set_target_to_stopping_point_z();
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// auto_land_run - lands in auto mode
// called by auto_run at 100hz or more
static void auto_land_run()
{
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed) {
attitude_control.init_targets();
attitude_control.set_throttle_out(0, false);
// set target to current position
wp_nav.init_loiter_target();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
}
// run loiter controller
wp_nav.update_loiter();
// call z-axis position controller
pos_control.set_alt_target_from_climb_rate(get_throttle_land(), G_Dt);
pos_control.update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.angleef_rp_rateef_y(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);
}
// auto_rtl_start - initialises RTL in AUTO flight mode
static void auto_rtl_start()
{
auto_mode = Auto_RTL;
// call regular rtl flight mode initialisation and ask it to ignore checks
rtl_init(true);
}
// auto_rtl_run - rtl in AUTO flight mode
// called by auto_run at 100hz or more
void auto_rtl_run()
{
// call regular rtl flight mode run function
rtl_run();
}
// auto_circle_start - initialises controller to fly a circle in AUTO flight mode
static void auto_circle_start(const Vector3f& center)
{
auto_mode = Auto_Circle;
// set circle center
circle_nav.set_center(center);
}
// auto_circle_run - circle in AUTO flight mode
// called by auto_run at 100hz or more
void auto_circle_run()
{
// call circle controller
circle_nav.update();
// call z-axis position controller
pos_control.update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.angleef_rpy(circle_nav.get_roll(), circle_nav.get_pitch(), circle_nav.get_yaw(),true);
}
// get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter
// set rtl parameter to true if this is during an RTL
uint8_t get_default_auto_yaw_mode(bool rtl)
{
switch (g.wp_yaw_behavior) {
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL:
if (rtl) {
return AUTO_YAW_HOLD;
}else{
return AUTO_YAW_LOOK_AT_NEXT_WP;
}
break;
case WP_YAW_BEHAVIOR_LOOK_AHEAD:
return AUTO_YAW_LOOK_AHEAD;
break;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP:
default:
return AUTO_YAW_LOOK_AT_NEXT_WP;
break;
}
}
// set_auto_yaw_mode - sets the yaw mode for auto
void set_auto_yaw_mode(uint8_t yaw_mode)
{
// return immediately if no change
if (auto_yaw_mode == yaw_mode) {
return;
}
auto_yaw_mode = yaw_mode;
// perform initialisation
switch (auto_yaw_mode) {
case AUTO_YAW_LOOK_AT_NEXT_WP:
// original_wp_bearing will be set by do_nav_wp or other nav command initialisatoin functions so no init required
break;
case AUTO_YAW_LOOK_AT_LOCATION:
// point towards a location held in yaw_look_at_WP
yaw_look_at_WP_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
yaw_look_at_heading = ahrs.yaw_sensor;
break;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
yaw_look_ahead_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_RESETTOARMEDYAW:
// initial_armed_bearing will be set during arming so no init required
break;
}
}
// get_auto_heading - returns target heading depending upon auto_yaw_mode
// 100hz update rate
float get_auto_heading(void)
{
switch(auto_yaw_mode) {
case AUTO_YAW_LOOK_AT_LOCATION:
// point towards a location held in yaw_look_at_WP
return get_look_at_yaw();
break;
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
return yaw_look_at_heading;
break;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
return get_look_ahead_yaw();
break;
case AUTO_YAW_RESETTOARMEDYAW:
// changes yaw to be same as when quad was armed
return initial_armed_bearing;
break;
case AUTO_YAW_LOOK_AT_NEXT_WP:
default:
// point towards next waypoint.
// we don't use wp_bearing because we don't want the copter to turn too much during flight
return original_wp_bearing;
break;
}
}