ardupilot/ArduCopter/flight_mode.pde
Randy Mackay 55e7e1eb3e Copter: allow HYBRID to be disabled to save flash
Hybrid flight mode costs 4.5k of flash which currently puts us over the
limit for APM1 and APM2 unless optical flow or other features are
disabled
2014-04-23 15:27:05 +09:00

307 lines
7.6 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* flight.pde - high level calls to set and update flight modes
* logic for individual flight modes is in control_acro.pde, control_stabilize.pde, etc
*/
// set_mode - change flight mode and perform any necessary initialisation
// optional force parameter used to force the flight mode change (used only first time mode is set)
// returns true if mode was succesfully set
// ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately
static bool set_mode(uint8_t mode)
{
// boolean to record if flight mode could be set
bool success = false;
bool ignore_checks = !motors.armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
// return immediately if we are already in the desired mode
if (mode == control_mode) {
return true;
}
switch(mode) {
case ACRO:
#if FRAME_CONFIG == HELI_FRAME
success = heli_acro_init(ignore_checks);
#else
success = acro_init(ignore_checks);
#endif
break;
case STABILIZE:
#if FRAME_CONFIG == HELI_FRAME
success = heli_stabilize_init(ignore_checks);
#else
success = stabilize_init(ignore_checks);
#endif
break;
case ALT_HOLD:
success = althold_init(ignore_checks);
break;
case AUTO:
success = auto_init(ignore_checks);
break;
case CIRCLE:
success = circle_init(ignore_checks);
break;
case LOITER:
success = loiter_init(ignore_checks);
break;
case GUIDED:
success = guided_init(ignore_checks);
break;
case LAND:
success = land_init(ignore_checks);
break;
case RTL:
success = rtl_init(ignore_checks);
break;
case OF_LOITER:
success = ofloiter_init(ignore_checks);
break;
case DRIFT:
success = drift_init(ignore_checks);
break;
case SPORT:
success = sport_init(ignore_checks);
break;
case FLIP:
success = flip_init(ignore_checks);
break;
#if AUTOTUNE_ENABLED == ENABLED
case AUTOTUNE:
success = autotune_init(ignore_checks);
break;
#endif
#if HYBRID_ENABLED == ENABLED
case HYBRID:
success = hybrid_init(ignore_checks);
break;
#endif
default:
success = false;
break;
}
// update flight mode
if (success) {
// perform any cleanup required by previous flight mode
exit_mode(control_mode, mode);
control_mode = mode;
Log_Write_Mode(control_mode);
}else{
// Log error that we failed to enter desired flight mode
Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode);
}
// return success or failure
return success;
}
// update_flight_mode - calls the appropriate attitude controllers based on flight mode
// called at 100hz or more
static void update_flight_mode()
{
switch (control_mode) {
case ACRO:
#if FRAME_CONFIG == HELI_FRAME
heli_acro_run();
#else
acro_run();
#endif
break;
case STABILIZE:
#if FRAME_CONFIG == HELI_FRAME
heli_stabilize_run();
#else
stabilize_run();
#endif
break;
case ALT_HOLD:
althold_run();
break;
case AUTO:
auto_run();
break;
case CIRCLE:
circle_run();
break;
case LOITER:
loiter_run();
break;
case GUIDED:
guided_run();
break;
case LAND:
land_run();
break;
case RTL:
rtl_run();
break;
case OF_LOITER:
ofloiter_run();
break;
case DRIFT:
drift_run();
break;
case SPORT:
sport_run();
break;
case FLIP:
flip_run();
break;
#if AUTOTUNE_ENABLED == ENABLED
case AUTOTUNE:
autotune_run();
break;
#endif
#if HYBRID_ENABLED == ENABLED
case HYBRID:
hybrid_run();
break;
#endif
}
}
// exit_mode - high level call to organise cleanup as a flight mode is exited
static void exit_mode(uint8_t old_control_mode, uint8_t new_control_mode)
{
#if AUTOTUNE_ENABLED == ENABLED
if (old_control_mode == AUTOTUNE) {
autotune_stop();
}
#endif
// smooth throttle transition when switching from manual to automatic flight modes
if (manual_flight_mode(old_control_mode) && !manual_flight_mode(new_control_mode) && motors.armed() && !ap.land_complete) {
// this assumes all manual flight modes use get_pilot_desired_throttle to translate pilot input to output throttle
set_accel_throttle_I_from_pilot_throttle(get_pilot_desired_throttle(g.rc_3.control_in));
}
}
// returns true or false whether mode requires GPS
static bool mode_requires_GPS(uint8_t mode) {
switch(mode) {
case AUTO:
case GUIDED:
case LOITER:
case RTL:
case CIRCLE:
case DRIFT:
case HYBRID:
return true;
default:
return false;
}
return false;
}
// manual_flight_mode - returns true if flight mode is completely manual (i.e. roll, pitch, yaw and throttle are controlled by pilot)
static bool manual_flight_mode(uint8_t mode) {
switch(mode) {
case ACRO:
case STABILIZE:
case DRIFT:
case SPORT:
return true;
default:
return false;
}
return false;
}
//
// print_flight_mode - prints flight mode to serial port.
//
static void
print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode)
{
switch (mode) {
case STABILIZE:
port->print_P(PSTR("STABILIZE"));
break;
case ACRO:
port->print_P(PSTR("ACRO"));
break;
case ALT_HOLD:
port->print_P(PSTR("ALT_HOLD"));
break;
case AUTO:
port->print_P(PSTR("AUTO"));
break;
case GUIDED:
port->print_P(PSTR("GUIDED"));
break;
case LOITER:
port->print_P(PSTR("LOITER"));
break;
case RTL:
port->print_P(PSTR("RTL"));
break;
case CIRCLE:
port->print_P(PSTR("CIRCLE"));
break;
case LAND:
port->print_P(PSTR("LAND"));
break;
case OF_LOITER:
port->print_P(PSTR("OF_LOITER"));
break;
case DRIFT:
port->print_P(PSTR("DRIFT"));
break;
case SPORT:
port->print_P(PSTR("SPORT"));
break;
case FLIP:
port->print_P(PSTR("FLIP"));
break;
case AUTOTUNE:
port->print_P(PSTR("AUTOTUNE"));
break;
case HYBRID:
port->print_P(PSTR("HYBRID"));
break;
default:
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode);
break;
}
}
// get_angle_targets_for_reporting() - returns 3d vector of roll, pitch and yaw target angles for logging and reporting to GCS
static void get_angle_targets_for_reporting(Vector3f& targets)
{
targets = attitude_control.angle_ef_targets();
}