ardupilot/ArduCopter/control_sport.pde
Andrew Tridgell 554de1f2d7 Copter: added channel objects named after input function
this follows the pattern used in plane and rover
2015-05-25 22:13:23 +09:00

107 lines
4.2 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* control_sport.pde - init and run calls for sport flight mode
*/
// sport_init - initialise sport controller
static bool sport_init(bool ignore_checks)
{
// initialize vertical speed and accelerationj
pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
pos_control.set_accel_z(g.pilot_accel_z);
// initialise altitude target to stopping point
pos_control.set_target_to_stopping_point_z();
return true;
}
// sport_run - runs the sport controller
// should be called at 100hz or more
static void sport_run()
{
float target_roll_rate, target_pitch_rate, target_yaw_rate;
float target_climb_rate = 0;
float takeoff_climb_rate = 0.0f;
// if not armed or throttle at zero, set throttle to zero and exit immediately
if(!motors.armed() || ap.throttle_zero) {
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(g.rc_3.control_in)-throttle_average);
return;
}
// apply SIMPLE mode transform
update_simple_mode();
// get pilot's desired roll and pitch rates
// calculate rate requests
target_roll_rate = channel_roll->control_in * g.acro_rp_p;
target_pitch_rate = channel_pitch->control_in * g.acro_rp_p;
int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor);
target_roll_rate -= constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll;
// Calculate trainer mode earth frame rate command for pitch
int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor);
target_pitch_rate -= constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch;
if (roll_angle > aparm.angle_max){
target_roll_rate -= g.acro_rp_p*(roll_angle-aparm.angle_max);
}else if (roll_angle < -aparm.angle_max) {
target_roll_rate -= g.acro_rp_p*(roll_angle+aparm.angle_max);
}
if (pitch_angle > aparm.angle_max){
target_pitch_rate -= g.acro_rp_p*(pitch_angle-aparm.angle_max);
}else if (pitch_angle < -aparm.angle_max) {
target_pitch_rate -= g.acro_rp_p*(pitch_angle+aparm.angle_max);
}
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
// get pilot desired climb rate
target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);
// get takeoff adjusted pilot and takeoff climb rates
takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);
// check for take-off
if (ap.land_complete && (takeoff_state.running || g.rc_3.control_in > get_takeoff_trigger_throttle())) {
if (!takeoff_state.running) {
takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
}
// indicate we are taking off
set_land_complete(false);
// clear i term when we're taking off
set_throttle_takeoff();
}
// reset target lean angles and heading while landed
if (ap.land_complete) {
// move throttle to between minimum and non-takeoff-throttle to keep us on the ground
attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(channel_throttle->control_in),true,g.throttle_filt);
pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
}else{
// call attitude controller
attitude_control.rate_ef_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);
// call throttle controller
if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) {
// if sonar is ok, use surface tracking
target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
}
// call position controller
pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt);
pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
pos_control.update_z_controller();
}
}