mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 00:18:29 -04:00
379 lines
15 KiB
C++
379 lines
15 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Initial Code by Jon Challinger
|
|
// Modified by Paul Riseborough
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_PitchController.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
const AP_Param::GroupInfo AP_PitchController::var_info[] = {
|
|
|
|
// @Param: TCONST
|
|
// @DisplayName: Pitch Time Constant
|
|
// @Description: Time constant in seconds from demanded to achieved pitch angle. Most models respond well to 0.5. May be reduced for faster responses, but setting lower than a model can achieve will not help.
|
|
// @Range: 0.4 1.0
|
|
// @Units: s
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("TCONST", 0, AP_PitchController, gains.tau, 0.5f),
|
|
|
|
// @Param: P
|
|
// @DisplayName: Proportional Gain
|
|
// @Description: Proportional gain from pitch angle demands to elevator. Higher values allow more servo response but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode.
|
|
// @Range: 0.1 3.0
|
|
// @Increment: 0.1
|
|
// @User: Standard
|
|
AP_GROUPINFO("P", 1, AP_PitchController, gains.P, 1.0f),
|
|
|
|
// @Param: D
|
|
// @DisplayName: Damping Gain
|
|
// @Description: Damping gain from pitch acceleration to elevator. Higher values reduce pitching in turbulence, but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode.
|
|
// @Range: 0 0.2
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
AP_GROUPINFO("D", 2, AP_PitchController, gains.D, 0.04f),
|
|
|
|
// @Param: I
|
|
// @DisplayName: Integrator Gain
|
|
// @Description: Integrator gain from long-term pitch angle offsets to elevator. Higher values "trim" out offsets faster but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode.
|
|
// @Range: 0 0.5
|
|
// @Increment: 0.05
|
|
// @User: Standard
|
|
AP_GROUPINFO("I", 3, AP_PitchController, gains.I, 0.3f),
|
|
|
|
// @Param: RMAX_UP
|
|
// @DisplayName: Pitch up max rate
|
|
// @Description: Maximum pitch up rate that the pitch controller demands (degrees/sec) in ACRO mode.
|
|
// @Range: 0 100
|
|
// @Units: deg/s
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("RMAX_UP", 4, AP_PitchController, gains.rmax, 0.0f),
|
|
|
|
// @Param: RMAX_DN
|
|
// @DisplayName: Pitch down max rate
|
|
// @Description: This sets the maximum nose down pitch rate that the controller will demand (degrees/sec). Setting it to zero disables the limit.
|
|
// @Range: 0 100
|
|
// @Units: deg/s
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("RMAX_DN", 5, AP_PitchController, _max_rate_neg, 0.0f),
|
|
|
|
// @Param: RLL
|
|
// @DisplayName: Roll compensation
|
|
// @Description: Gain added to pitch to keep aircraft from descending or ascending in turns. Increase in increments of 0.05 to reduce altitude loss. Decrease for altitude gain.
|
|
// @Range: 0.7 1.5
|
|
// @Increment: 0.05
|
|
// @User: Standard
|
|
AP_GROUPINFO("RLL", 6, AP_PitchController, _roll_ff, 1.0f),
|
|
|
|
// @Param: IMAX
|
|
// @DisplayName: Integrator limit
|
|
// @Description: Limit of pitch integrator gain in centi-degrees of servo travel. Servos are assumed to have +/- 4500 centi-degrees of travel, so a value of 3000 allows trim of up to 2/3 of servo travel range.
|
|
// @Range: 0 4500
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("IMAX", 7, AP_PitchController, gains.imax, 3000),
|
|
|
|
// @Param: FF
|
|
// @DisplayName: Feed forward Gain
|
|
// @Description: Gain from demanded rate to elevator output.
|
|
// @Range: 0.1 4.0
|
|
// @Increment: 0.1
|
|
// @User: Standard
|
|
AP_GROUPINFO("FF", 8, AP_PitchController, gains.FF, 0.0f),
|
|
|
|
// @Param: SRMAX
|
|
// @DisplayName: Servo slew rate limit
|
|
// @Description: Sets an upper limit on the servo slew rate produced by the D-gain (pitch rate feedback). If the amplitude of the control action produced by the pitch rate feedback exceeds this value, then the D-gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive D-gain. The limit should be set to no more than 25% of the servo's specified slew rate to allow for inertia and aerodynamic load effects. Note: The D-gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
|
|
// @Units: deg/s
|
|
// @Range: 0 500
|
|
// @Increment: 10.0
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SRMAX", 9, AP_PitchController, _slew_rate_max, 150.0f),
|
|
|
|
// @Param: SRTAU
|
|
// @DisplayName: Servo slew rate decay time constant
|
|
// @Description: This sets the time constant used to recover the D gain after it has been reduced due to excessive servo slew rate.
|
|
// @Units: s
|
|
// @Range: 0.5 5.0
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SRTAU", 10, AP_PitchController, _slew_rate_tau, 1.0f),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
/*
|
|
Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500
|
|
A positive demand is up
|
|
Inputs are:
|
|
1) demanded pitch rate in degrees/second
|
|
2) control gain scaler = scaling_speed / aspeed
|
|
3) boolean which is true when stabilise mode is active
|
|
4) minimum FBW airspeed (metres/sec)
|
|
5) maximum FBW airspeed (metres/sec)
|
|
*/
|
|
int32_t AP_PitchController::_get_rate_out(float desired_rate, float scaler, bool disable_integrator, float aspeed)
|
|
{
|
|
uint32_t tnow = AP_HAL::millis();
|
|
uint32_t dt = tnow - _last_t;
|
|
|
|
if (_last_t == 0 || dt > 1000) {
|
|
dt = 0;
|
|
}
|
|
_last_t = tnow;
|
|
|
|
float delta_time = (float)dt * 0.001f;
|
|
|
|
// Get body rate vector (radians/sec)
|
|
float omega_y = _ahrs.get_gyro().y;
|
|
|
|
// Calculate the pitch rate error (deg/sec) and scale
|
|
float achieved_rate = ToDeg(omega_y);
|
|
_pid_info.error = desired_rate - achieved_rate;
|
|
float rate_error = _pid_info.error * scaler;
|
|
_pid_info.target = desired_rate;
|
|
_pid_info.actual = achieved_rate;
|
|
|
|
// Multiply pitch rate error by _ki_rate and integrate
|
|
// Scaler is applied before integrator so that integrator state relates directly to elevator deflection
|
|
// This means elevator trim offset doesn't change as the value of scaler changes with airspeed
|
|
// Don't integrate if in stabilise mode as the integrator will wind up against the pilots inputs
|
|
if (!disable_integrator && gains.I > 0) {
|
|
float k_I = gains.I;
|
|
if (is_zero(gains.FF)) {
|
|
/*
|
|
if the user hasn't set a direct FF then assume they are
|
|
not doing sophisticated tuning. Set a minimum I value of
|
|
0.15 to ensure that the time constant for trimming in
|
|
pitch is not too long. We have had a lot of user issues
|
|
with very small I value leading to very slow pitch
|
|
trimming, which causes a lot of problems for TECS. A
|
|
value of 0.15 is still quite small, but a lot better
|
|
than what many users are running.
|
|
*/
|
|
k_I = MAX(k_I, 0.15f);
|
|
}
|
|
float ki_rate = k_I * gains.tau;
|
|
//only integrate if gain and time step are positive and airspeed above min value.
|
|
if (dt > 0 && aspeed > 0.5f*float(aparm.airspeed_min)) {
|
|
float integrator_delta = rate_error * ki_rate * delta_time * scaler;
|
|
if (_last_out < -45) {
|
|
// prevent the integrator from increasing if surface defln demand is above the upper limit
|
|
integrator_delta = MAX(integrator_delta , 0);
|
|
} else if (_last_out > 45) {
|
|
// prevent the integrator from decreasing if surface defln demand is below the lower limit
|
|
integrator_delta = MIN(integrator_delta , 0);
|
|
}
|
|
_pid_info.I += integrator_delta;
|
|
}
|
|
} else {
|
|
_pid_info.I = 0;
|
|
}
|
|
|
|
// Scale the integration limit
|
|
float intLimScaled = gains.imax * 0.01f;
|
|
|
|
// Constrain the integrator state
|
|
_pid_info.I = constrain_float(_pid_info.I, -intLimScaled, intLimScaled);
|
|
|
|
// Calculate equivalent gains so that values for K_P and K_I can be taken across from the old PID law
|
|
// No conversion is required for K_D
|
|
float eas2tas = _ahrs.get_EAS2TAS();
|
|
float kp_ff = MAX((gains.P - gains.I * gains.tau) * gains.tau - gains.D , 0) / eas2tas;
|
|
float k_ff = gains.FF / eas2tas;
|
|
|
|
// Calculate the demanded control surface deflection
|
|
// Note the scaler is applied again. We want a 1/speed scaler applied to the feed-forward
|
|
// path, but want a 1/speed^2 scaler applied to the rate error path.
|
|
// This is because acceleration scales with speed^2, but rate scales with speed.
|
|
_pid_info.P = desired_rate * kp_ff * scaler;
|
|
_pid_info.FF = desired_rate * k_ff * scaler;
|
|
_pid_info.D = rate_error * gains.D * scaler;
|
|
|
|
if (dt > 0 && _slew_rate_max > 0) {
|
|
// Calculate the slew rate amplitude produced by the unmodified D term
|
|
|
|
// calculate a low pass filtered slew rate
|
|
float Dterm_slew_rate = _slew_rate_filter.apply((fabsf(_pid_info.D - _last_pid_info_D)/ delta_time), delta_time);
|
|
|
|
// rectify and apply a decaying envelope filter
|
|
float alpha = 1.0f - constrain_float(delta_time/_slew_rate_tau, 0.0f , 1.0f);
|
|
_slew_rate_amplitude = fmaxf(fabsf(Dterm_slew_rate), alpha * _slew_rate_amplitude);
|
|
_slew_rate_amplitude = fminf(_slew_rate_amplitude, 10.0f*_slew_rate_max);
|
|
|
|
// Calculate and apply the D gain adjustment
|
|
_pid_info.Dmod = _D_gain_modifier = _slew_rate_max / fmaxf(_slew_rate_amplitude, _slew_rate_max);
|
|
_pid_info.D *= _D_gain_modifier;
|
|
}
|
|
|
|
_last_pid_info_D = _pid_info.D;
|
|
|
|
_last_out = _pid_info.D + _pid_info.FF + _pid_info.P;
|
|
|
|
if (autotune.running && aspeed > aparm.airspeed_min) {
|
|
// let autotune have a go at the values
|
|
// Note that we don't pass the integrator component so we get
|
|
// a better idea of how much the base PD controller
|
|
// contributed
|
|
autotune.update(desired_rate, achieved_rate, _last_out);
|
|
|
|
// set down rate to rate up when auto-tuning
|
|
_max_rate_neg.set_and_save_ifchanged(gains.rmax);
|
|
}
|
|
|
|
_last_out += _pid_info.I;
|
|
|
|
/*
|
|
when we are past the users defined roll limit for the
|
|
aircraft our priority should be to bring the aircraft back
|
|
within the roll limit. Using elevator for pitch control at
|
|
large roll angles is ineffective, and can be counter
|
|
productive as it induces earth-frame yaw which can reduce
|
|
the ability to roll. We linearly reduce elevator input when
|
|
beyond the configured roll limit, reducing to zero at 90
|
|
degrees
|
|
*/
|
|
float roll_wrapped = labs(_ahrs.roll_sensor);
|
|
if (roll_wrapped > 9000) {
|
|
roll_wrapped = 18000 - roll_wrapped;
|
|
}
|
|
if (roll_wrapped > aparm.roll_limit_cd + 500 && aparm.roll_limit_cd < 8500 &&
|
|
labs(_ahrs.pitch_sensor) < 7000) {
|
|
float roll_prop = (roll_wrapped - (aparm.roll_limit_cd+500)) / (float)(9000 - aparm.roll_limit_cd);
|
|
_last_out *= (1 - roll_prop);
|
|
}
|
|
|
|
// Convert to centi-degrees and constrain
|
|
return constrain_float(_last_out * 100, -4500, 4500);
|
|
}
|
|
|
|
/*
|
|
Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500
|
|
A positive demand is up
|
|
Inputs are:
|
|
1) demanded pitch rate in degrees/second
|
|
2) control gain scaler = scaling_speed / aspeed
|
|
3) boolean which is true when stabilise mode is active
|
|
4) minimum FBW airspeed (metres/sec)
|
|
5) maximum FBW airspeed (metres/sec)
|
|
*/
|
|
int32_t AP_PitchController::get_rate_out(float desired_rate, float scaler)
|
|
{
|
|
float aspeed;
|
|
if (!_ahrs.airspeed_estimate(aspeed)) {
|
|
// If no airspeed available use average of min and max
|
|
aspeed = 0.5f*(float(aparm.airspeed_min) + float(aparm.airspeed_max));
|
|
}
|
|
return _get_rate_out(desired_rate, scaler, false, aspeed);
|
|
}
|
|
|
|
/*
|
|
get the rate offset in degrees/second needed for pitch in body frame
|
|
to maintain height in a coordinated turn.
|
|
|
|
Also returns the inverted flag and the estimated airspeed in m/s for
|
|
use by the rest of the pitch controller
|
|
*/
|
|
float AP_PitchController::_get_coordination_rate_offset(float &aspeed, bool &inverted) const
|
|
{
|
|
float rate_offset;
|
|
float bank_angle = _ahrs.roll;
|
|
|
|
// limit bank angle between +- 80 deg if right way up
|
|
if (fabsf(bank_angle) < radians(90)) {
|
|
bank_angle = constrain_float(bank_angle,-radians(80),radians(80));
|
|
inverted = false;
|
|
} else {
|
|
inverted = true;
|
|
if (bank_angle > 0.0f) {
|
|
bank_angle = constrain_float(bank_angle,radians(100),radians(180));
|
|
} else {
|
|
bank_angle = constrain_float(bank_angle,-radians(180),-radians(100));
|
|
}
|
|
}
|
|
if (!_ahrs.airspeed_estimate(aspeed)) {
|
|
// If no airspeed available use average of min and max
|
|
aspeed = 0.5f*(float(aparm.airspeed_min) + float(aparm.airspeed_max));
|
|
}
|
|
if (abs(_ahrs.pitch_sensor) > 7000) {
|
|
// don't do turn coordination handling when at very high pitch angles
|
|
rate_offset = 0;
|
|
} else {
|
|
rate_offset = cosf(_ahrs.pitch)*fabsf(ToDeg((GRAVITY_MSS / MAX((aspeed * _ahrs.get_EAS2TAS()) , MAX(aparm.airspeed_min, 1))) * tanf(bank_angle) * sinf(bank_angle))) * _roll_ff;
|
|
}
|
|
if (inverted) {
|
|
rate_offset = -rate_offset;
|
|
}
|
|
return rate_offset;
|
|
}
|
|
|
|
// Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500
|
|
// A positive demand is up
|
|
// Inputs are:
|
|
// 1) demanded pitch angle in centi-degrees
|
|
// 2) control gain scaler = scaling_speed / aspeed
|
|
// 3) boolean which is true when stabilise mode is active
|
|
// 4) minimum FBW airspeed (metres/sec)
|
|
// 5) maximum FBW airspeed (metres/sec)
|
|
//
|
|
int32_t AP_PitchController::get_servo_out(int32_t angle_err, float scaler, bool disable_integrator)
|
|
{
|
|
// Calculate offset to pitch rate demand required to maintain pitch angle whilst banking
|
|
// Calculate ideal turn rate from bank angle and airspeed assuming a level coordinated turn
|
|
// Pitch rate offset is the component of turn rate about the pitch axis
|
|
float aspeed;
|
|
float rate_offset;
|
|
bool inverted;
|
|
|
|
if (gains.tau < 0.1f) {
|
|
gains.tau.set(0.1f);
|
|
}
|
|
|
|
rate_offset = _get_coordination_rate_offset(aspeed, inverted);
|
|
|
|
// Calculate the desired pitch rate (deg/sec) from the angle error
|
|
float desired_rate = angle_err * 0.01f / gains.tau;
|
|
|
|
// limit the maximum pitch rate demand. Don't apply when inverted
|
|
// as the rates will be tuned when upright, and it is common that
|
|
// much higher rates are needed inverted
|
|
if (!inverted) {
|
|
if (_max_rate_neg && desired_rate < -_max_rate_neg) {
|
|
desired_rate = -_max_rate_neg;
|
|
} else if (gains.rmax && desired_rate > gains.rmax) {
|
|
desired_rate = gains.rmax;
|
|
}
|
|
}
|
|
|
|
if (inverted) {
|
|
desired_rate = -desired_rate;
|
|
}
|
|
|
|
// Apply the turn correction offset
|
|
desired_rate = desired_rate + rate_offset;
|
|
|
|
return _get_rate_out(desired_rate, scaler, disable_integrator, aspeed);
|
|
}
|
|
|
|
void AP_PitchController::reset_I()
|
|
{
|
|
_pid_info.I = 0;
|
|
}
|