ardupilot/ArduCopter/GCS_Mavlink.cpp

2271 lines
74 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Copter.h"
#include "version.h"
#include "GCS_Mavlink.h"
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS)
void Copter::gcs_send_heartbeat(void)
{
gcs_send_message(MSG_HEARTBEAT);
}
void Copter::gcs_send_deferred(void)
{
gcs_send_message(MSG_RETRY_DEFERRED);
GCS_MAVLINK::service_statustext();
}
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
NOINLINE void Copter::send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = ap.land_complete ? MAV_STATE_STANDBY : MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
// set system as critical if any failsafe have triggered
if (failsafe.radio || failsafe.battery || failsafe.gcs || failsafe.ekf || failsafe.terrain || failsafe.adsb) {
system_status = MAV_STATE_CRITICAL;
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
switch (control_mode) {
case AUTO:
case RTL:
case LOITER:
case AVOID_ADSB:
case GUIDED:
case CIRCLE:
case POSHOLD:
case BRAKE:
base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
default:
break;
}
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (motors.armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
gcs[chan-MAVLINK_COMM_0].send_heartbeat(FRAME_MAV_TYPE,
base_mode,
custom_mode,
system_status);
}
NOINLINE void Copter::send_attitude(mavlink_channel_t chan)
{
const Vector3f &gyro = ins.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
gyro.x,
gyro.y,
gyro.z);
}
#if AC_FENCE == ENABLED
NOINLINE void Copter::send_limits_status(mavlink_channel_t chan)
{
fence_send_mavlink_status(chan);
}
#endif
NOINLINE void Copter::send_extended_status1(mavlink_channel_t chan)
{
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
#if PRECISION_LANDING == ENABLED
if (precland.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
}
#endif
if (ap.rc_receiver_present) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
if (copter.DataFlash.logging_present()) { // primary logging only (usually File)
control_sensors_present |= MAV_SYS_STATUS_LOGGING;
}
#if PROXIMITY_ENABLED == ENABLED
if (copter.g2.proximity.get_status() > AP_Proximity::Proximity_NotConnected) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
#endif
// all present sensors enabled by default except altitude and position control and motors which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL &
~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL &
~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS &
~MAV_SYS_STATUS_LOGGING);
switch (control_mode) {
case AUTO:
case AVOID_ADSB:
case GUIDED:
case LOITER:
case RTL:
case CIRCLE:
case LAND:
case POSHOLD:
case BRAKE:
case THROW:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL;
break;
case ALT_HOLD:
case GUIDED_NOGPS:
case SPORT:
case AUTOTUNE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL;
break;
default:
// stabilize, acro, drift, and flip have no automatic x,y or z control (i.e. all manual)
break;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
if (copter.DataFlash.logging_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
}
// default to all healthy
control_sensors_health = control_sensors_present;
if (!barometer.all_healthy()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
if (!g.compass_enabled || !compass.healthy() || !ahrs.use_compass()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (gps.status() == AP_GPS::NO_GPS) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_GPS;
}
if (!ap.rc_receiver_present || failsafe.radio) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
#if OPTFLOW == ENABLED
if (!optflow.healthy()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
#if PRECISION_LANDING == ENABLED
if (!precland.healthy()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION;
}
#endif
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
if (!ins.get_accel_health_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
}
if (ahrs.initialised() && !ahrs.healthy()) {
// AHRS subsystem is unhealthy
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (copter.DataFlash.logging_failed()) {
control_sensors_health &= ~MAV_SYS_STATUS_LOGGING;
}
#if PROXIMITY_ENABLED == ENABLED
if (copter.g2.proximity.get_status() < AP_Proximity::Proximity_Good) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
#endif
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.has_current() && battery.healthy()) {
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
switch (terrain.status()) {
case AP_Terrain::TerrainStatusDisabled:
break;
case AP_Terrain::TerrainStatusUnhealthy:
// To-Do: restore unhealthy terrain status reporting once terrain is used in copter
//control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
//control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
//break;
case AP_Terrain::TerrainStatusOK:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
control_sensors_health |= MAV_SYS_STATUS_TERRAIN;
break;
}
#endif
#if RANGEFINDER_ENABLED == ENABLED
if (rangefinder.num_sensors() > 0) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
if (rangefinder.has_data()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
}
#endif
if (!ap.initialised || ins.calibrating()) {
// while initialising the gyros and accels are not enabled
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(scheduler.load_average(MAIN_LOOP_MICROS) * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
#if FRSKY_TELEM_ENABLED == ENABLED
// give mask of error flags to Frsky_Telemetry
uint32_t sensors_error_flags = (~control_sensors_health) & control_sensors_enabled & control_sensors_present;
frsky_telemetry.update_sensor_status_flags(sensors_error_flags);
#endif
}
void NOINLINE Copter::send_location(mavlink_channel_t chan)
{
uint32_t fix_time;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) {
fix_time = gps.last_fix_time_ms();
} else {
fix_time = millis();
}
const Vector3f &vel = inertial_nav.get_velocity();
mavlink_msg_global_position_int_send(
chan,
fix_time,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
(ahrs.get_home().alt + current_loc.alt) * 10UL, // millimeters above sea level
current_loc.alt * 10, // millimeters above ground
vel.x, // X speed cm/s (+ve North)
vel.y, // Y speed cm/s (+ve East)
vel.z, // Z speed cm/s (+ve up)
ahrs.yaw_sensor); // compass heading in 1/100 degree
}
void NOINLINE Copter::send_nav_controller_output(mavlink_channel_t chan)
{
const Vector3f &targets = attitude_control.get_att_target_euler_cd();
mavlink_msg_nav_controller_output_send(
chan,
targets.x / 1.0e2f,
targets.y / 1.0e2f,
targets.z / 1.0e2f,
wp_bearing / 1.0e2f,
wp_distance / 1.0e2f,
pos_control.get_alt_error() / 1.0e2f,
0,
0);
}
// report simulator state
void NOINLINE Copter::send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.simstate_send(chan);
#endif
}
void NOINLINE Copter::send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
hal.analogin->board_voltage()*1000,
0);
}
void NOINLINE Copter::send_servo_out(mavlink_channel_t chan)
{
#if HIL_MODE != HIL_MODE_DISABLED
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with HIL maintainers
#if FRAME_CONFIG == HELI_FRAME
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.get_servo_out(),
g.rc_2.get_servo_out(),
g.rc_3.get_radio_out(),
g.rc_4.get_servo_out(),
0,
0,
0,
0,
receiver_rssi);
#else
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.get_servo_out(),
g.rc_2.get_servo_out(),
g.rc_3.get_radio_out(),
g.rc_4.get_servo_out(),
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
receiver_rssi);
#endif
#endif // HIL_MODE
}
void NOINLINE Copter::send_vfr_hud(mavlink_channel_t chan)
{
mavlink_msg_vfr_hud_send(
chan,
gps.ground_speed(),
gps.ground_speed(),
(ahrs.yaw_sensor / 100) % 360,
(int16_t)(motors.get_throttle() * 100),
current_loc.alt / 100.0f,
climb_rate / 100.0f);
}
void NOINLINE Copter::send_current_waypoint(mavlink_channel_t chan)
{
mavlink_msg_mission_current_send(chan, mission.get_current_nav_index());
}
#if RANGEFINDER_ENABLED == ENABLED
void NOINLINE Copter::send_rangefinder(mavlink_channel_t chan)
{
// exit immediately if rangefinder is disabled
if (!rangefinder.has_data()) {
return;
}
mavlink_msg_rangefinder_send(
chan,
rangefinder.distance_cm() * 0.01f,
rangefinder.voltage_mv() * 0.001f);
}
#endif
/*
send RPM packet
*/
void NOINLINE Copter::send_rpm(mavlink_channel_t chan)
{
if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) {
mavlink_msg_rpm_send(
chan,
rpm_sensor.get_rpm(0),
rpm_sensor.get_rpm(1));
}
}
/*
send PID tuning message
*/
void Copter::send_pid_tuning(mavlink_channel_t chan)
{
const Vector3f &gyro = ahrs.get_gyro();
if (g.gcs_pid_mask & 1) {
const DataFlash_Class::PID_Info &pid_info = attitude_control.get_rate_roll_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ROLL,
pid_info.desired*0.01f,
degrees(gyro.x),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 2) {
const DataFlash_Class::PID_Info &pid_info = attitude_control.get_rate_pitch_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH,
pid_info.desired*0.01f,
degrees(gyro.y),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 4) {
const DataFlash_Class::PID_Info &pid_info = attitude_control.get_rate_yaw_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_YAW,
pid_info.desired*0.01f,
degrees(gyro.z),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 8) {
const DataFlash_Class::PID_Info &pid_info = g.pid_accel_z.get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ,
pid_info.desired*0.01f,
-(ahrs.get_accel_ef_blended().z + GRAVITY_MSS),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
}
uint32_t GCS_MAVLINK_Copter::telem_delay() const
{
return (uint32_t)(copter.g.telem_delay);
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK_Copter::try_send_message(enum ap_message id)
{
if (telemetry_delayed(chan)) {
return false;
}
#if HIL_MODE != HIL_MODE_SENSORS
// if we don't have at least 250 micros remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
if (copter.scheduler.time_available_usec() < 250 && copter.motors.armed()) {
copter.gcs_out_of_time = true;
return false;
}
#endif
switch(id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
last_heartbeat_time = AP_HAL::millis();
copter.send_heartbeat(chan);
break;
case MSG_EXTENDED_STATUS1:
// send extended status only once vehicle has been initialised
// to avoid unnecessary errors being reported to user
if (copter.ap.initialised) {
CHECK_PAYLOAD_SIZE(SYS_STATUS);
copter.send_extended_status1(chan);
CHECK_PAYLOAD_SIZE(POWER_STATUS);
send_power_status();
}
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo();
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
copter.send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
copter.send_location(chan);
break;
case MSG_LOCAL_POSITION:
CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED);
send_local_position(copter.ahrs);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
copter.send_nav_controller_output(chan);
break;
case MSG_GPS_RAW:
return send_gps_raw(copter.gps);
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
send_system_time(copter.gps);
break;
case MSG_SERVO_OUT:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
copter.send_servo_out(chan);
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS);
send_radio_in(copter.receiver_rssi);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_servo_output_raw(false);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
copter.send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu(copter.ins, copter.compass);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_scaled_pressure(copter.barometer);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_sensor_offsets(copter.ins, copter.compass, copter.barometer);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
copter.send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
queued_param_send();
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
queued_waypoint_send();
break;
case MSG_RANGEFINDER:
#if RANGEFINDER_ENABLED == ENABLED
CHECK_PAYLOAD_SIZE(RANGEFINDER);
copter.send_rangefinder(chan);
#endif
break;
case MSG_RPM:
CHECK_PAYLOAD_SIZE(RPM);
copter.send_rpm(chan);
break;
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
copter.terrain.send_request(chan);
#endif
break;
case MSG_CAMERA_FEEDBACK:
#if CAMERA == ENABLED
CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK);
copter.camera.send_feedback(chan, copter.gps, copter.ahrs, copter.current_loc);
#endif
break;
case MSG_STATUSTEXT:
// depreciated, use GCS_MAVLINK::send_statustext*
return false;
case MSG_LIMITS_STATUS:
#if AC_FENCE == ENABLED
CHECK_PAYLOAD_SIZE(LIMITS_STATUS);
copter.send_limits_status(chan);
#endif
break;
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(copter.ahrs);
break;
case MSG_SIMSTATE:
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
CHECK_PAYLOAD_SIZE(SIMSTATE);
copter.send_simstate(chan);
#endif
CHECK_PAYLOAD_SIZE(AHRS2);
send_ahrs2(copter.ahrs);
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
copter.send_hwstatus(chan);
break;
case MSG_MOUNT_STATUS:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(MOUNT_STATUS);
copter.camera_mount.status_msg(chan);
#endif // MOUNT == ENABLED
break;
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
send_battery2(copter.battery);
break;
case MSG_OPTICAL_FLOW:
#if OPTFLOW == ENABLED
CHECK_PAYLOAD_SIZE(OPTICAL_FLOW);
send_opticalflow(copter.ahrs, copter.optflow);
#endif
break;
case MSG_GIMBAL_REPORT:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(GIMBAL_REPORT);
copter.camera_mount.send_gimbal_report(chan);
#endif
break;
case MSG_EKF_STATUS_REPORT:
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
copter.ahrs.send_ekf_status_report(chan);
break;
case MSG_FENCE_STATUS:
case MSG_WIND:
case MSG_POSITION_TARGET_GLOBAL_INT:
// unused
break;
case MSG_PID_TUNING:
CHECK_PAYLOAD_SIZE(PID_TUNING);
copter.send_pid_tuning(chan);
break;
case MSG_VIBRATION:
CHECK_PAYLOAD_SIZE(VIBRATION);
send_vibration(copter.ins);
break;
case MSG_MISSION_ITEM_REACHED:
CHECK_PAYLOAD_SIZE(MISSION_ITEM_REACHED);
mavlink_msg_mission_item_reached_send(chan, mission_item_reached_index);
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
case MSG_MAG_CAL_PROGRESS:
copter.compass.send_mag_cal_progress(chan);
break;
case MSG_MAG_CAL_REPORT:
copter.compass.send_mag_cal_report(chan);
break;
case MSG_ADSB_VEHICLE:
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
copter.adsb.send_adsb_vehicle(chan);
break;
}
return true;
}
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_PRESSURE, and SENSOR_OFFSETS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 0),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Stream rate of SYS_STATUS, MEMINFO, MISSION_CURRENT, GPS_RAW_INT, NAV_CONTROLLER_OUTPUT, and LIMITS_STATUS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 0),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 0),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Stream rate of RC_CHANNELS_SCALED (HIL only) to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 0),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Stream rate of GLOBAL_POSITION_INT to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 0),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Stream rate of ATTITUDE and SIMSTATE (SITL only) to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 0),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Stream rate of VFR_HUD to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 0),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Stream rate of AHRS, HWSTATUS, and SYSTEM_TIME to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 0),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Stream rate of PARAM_VALUE to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 0),
// @Param: ADSB
// @DisplayName: ADSB stream rate to ground station
// @Description: ADSB stream rate to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("ADSB", 9, GCS_MAVLINK, streamRates[9], 5),
AP_GROUPEND
};
void
GCS_MAVLINK_Copter::data_stream_send(void)
{
if (waypoint_receiving) {
// don't interfere with mission transfer
return;
}
if (!copter.in_mavlink_delay && !copter.motors.armed()) {
handle_log_send(copter.DataFlash);
}
copter.gcs_out_of_time = false;
if (_queued_parameter != NULL) {
if (streamRates[STREAM_PARAMS].get() <= 0) {
streamRates[STREAM_PARAMS].set(10);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
// don't send anything else at the same time as parameters
return;
}
if (copter.gcs_out_of_time) return;
if (copter.in_mavlink_delay) {
// don't send any other stream types while in the delay callback
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
if (copter.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_LIMITS_STATUS);
}
if (copter.gcs_out_of_time) return;
if (stream_trigger(STREAM_POSITION)) {
send_message(MSG_LOCATION);
send_message(MSG_LOCAL_POSITION);
}
if (copter.gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (copter.gcs_out_of_time) return;
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
}
if (copter.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
send_message(MSG_PID_TUNING);
}
if (copter.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (copter.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_SYSTEM_TIME);
send_message(MSG_RANGEFINDER);
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
send_message(MSG_TERRAIN);
#endif
send_message(MSG_BATTERY2);
send_message(MSG_MOUNT_STATUS);
send_message(MSG_OPTICAL_FLOW);
send_message(MSG_GIMBAL_REPORT);
send_message(MSG_MAG_CAL_REPORT);
send_message(MSG_MAG_CAL_PROGRESS);
send_message(MSG_EKF_STATUS_REPORT);
send_message(MSG_VIBRATION);
send_message(MSG_RPM);
}
if (copter.gcs_out_of_time) return;
if (stream_trigger(STREAM_ADSB)) {
send_message(MSG_ADSB_VEHICLE);
}
}
bool GCS_MAVLINK_Copter::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
return copter.do_guided(cmd);
}
void GCS_MAVLINK_Copter::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
// add home alt if needed
if (cmd.content.location.flags.relative_alt) {
cmd.content.location.alt += copter.ahrs.get_home().alt;
}
// To-Do: update target altitude for loiter or waypoint controller depending upon nav mode
}
void GCS_MAVLINK_Copter::packetReceived(const mavlink_status_t &status,
mavlink_message_t &msg)
{
if (copter.g2.dev_options.get() & DevOptionADSBMAVLink) {
// optional handling of GLOBAL_POSITION_INT as a MAVLink based avoidance source
copter.avoidance_adsb.handle_msg(msg);
}
GCS_MAVLINK::packetReceived(status, msg);
}
void GCS_MAVLINK_Copter::handleMessage(mavlink_message_t* msg)
{
uint8_t result = MAV_RESULT_FAILED; // assume failure. Each messages id is responsible for return ACK or NAK if required
switch (msg->msgid) {
case MAVLINK_MSG_ID_HEARTBEAT: // MAV ID: 0
{
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if(msg->sysid != copter.g.sysid_my_gcs) break;
copter.failsafe.last_heartbeat_ms = AP_HAL::millis();
copter.pmTest1++;
break;
}
case MAVLINK_MSG_ID_SET_MODE: // MAV ID: 11
{
#ifdef DISALLOW_GCS_MODE_CHANGE_DURING_RC_FAILSAFE
if (!copter.failsafe.radio) {
handle_set_mode(msg, FUNCTOR_BIND(&copter, &Copter::gcs_set_mode, bool, uint8_t));
} else {
// don't allow mode changes while in radio failsafe
mavlink_msg_command_ack_send_buf(msg, chan, MAVLINK_MSG_ID_SET_MODE, MAV_RESULT_FAILED);
}
#else
handle_set_mode(msg, FUNCTOR_BIND(&copter, &Copter::gcs_set_mode, bool, uint8_t));
#endif
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ: // MAV ID: 20
{
handle_param_request_read(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: // MAV ID: 21
{
// mark the firmware version in the tlog
send_text(MAV_SEVERITY_INFO, FIRMWARE_STRING);
#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION)
send_text(MAV_SEVERITY_INFO, "PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION);
#endif
send_text(MAV_SEVERITY_INFO, "Frame: " FRAME_CONFIG_STRING);
handle_param_request_list(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_SET: // 23
{
handle_param_set(msg, &copter.DataFlash);
break;
}
case MAVLINK_MSG_ID_PARAM_VALUE:
{
#if MOUNT == ENABLED
copter.camera_mount.handle_param_value(msg);
#endif
break;
}
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: // MAV ID: 38
{
handle_mission_write_partial_list(copter.mission, msg);
break;
}
// GCS has sent us a mission item, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM: // MAV ID: 39
{
if (handle_mission_item(msg, copter.mission)) {
copter.DataFlash.Log_Write_EntireMission(copter.mission);
}
break;
}
case MAVLINK_MSG_ID_MISSION_ITEM_INT:
{
if (handle_mission_item(msg, copter.mission)) {
copter.DataFlash.Log_Write_EntireMission(copter.mission);
}
break;
}
// read an individual command from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST: // MAV ID: 40, 51
{
handle_mission_request(copter.mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // MAV ID: 41
{
handle_mission_set_current(copter.mission, msg);
break;
}
// GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: // MAV ID: 43
{
handle_mission_request_list(copter.mission, msg);
break;
}
// GCS provides the full number of commands it wishes to upload
// individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message
case MAVLINK_MSG_ID_MISSION_COUNT: // MAV ID: 44
{
handle_mission_count(copter.mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // MAV ID: 45
{
handle_mission_clear_all(copter.mission, msg);
break;
}
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: // MAV ID: 66
{
handle_request_data_stream(msg, false);
break;
}
case MAVLINK_MSG_ID_STATUSTEXT:
{
// ignore any statustext messages not from our GCS:
if (msg->sysid != copter.g.sysid_my_gcs) {
break;
}
mavlink_statustext_t packet;
mavlink_msg_statustext_decode(msg, &packet);
char text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1+4] = { 'G','C','S',':'};
memcpy(&text[4], packet.text, MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN);
copter.DataFlash.Log_Write_Message(text);
break;
}
case MAVLINK_MSG_ID_GIMBAL_REPORT:
{
#if MOUNT == ENABLED
handle_gimbal_report(copter.camera_mount, msg);
#endif
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: // MAV ID: 70
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != copter.g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
// record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation
copter.failsafe.rc_override_active = hal.rcin->set_overrides(v, 8);
// a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes
copter.failsafe.last_heartbeat_ms = AP_HAL::millis();
break;
}
case MAVLINK_MSG_ID_COMMAND_INT:
{
// decode packet
mavlink_command_int_t packet;
mavlink_msg_command_int_decode(msg, &packet);
switch(packet.command)
{
case MAV_CMD_DO_SET_ROI: {
// param1 : /* Region of interest mode (not used)*/
// param2 : /* MISSION index/ target ID (not used)*/
// param3 : /* ROI index (not used)*/
// param4 : /* empty */
// x : lat
// y : lon
// z : alt
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
break;
}
Location roi_loc;
roi_loc.lat = packet.x;
roi_loc.lng = packet.y;
roi_loc.alt = (int32_t)(packet.z * 100.0f);
copter.set_auto_yaw_roi(roi_loc);
result = MAV_RESULT_ACCEPTED;
break;
}
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
// send ACK or NAK
mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result);
break;
}
// Pre-Flight calibration requests
case MAVLINK_MSG_ID_COMMAND_LONG: // MAV ID: 76
{
// decode packet
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
switch(packet.command) {
case MAV_CMD_START_RX_PAIR:
result = handle_rc_bind(packet);
break;
case MAV_CMD_NAV_TAKEOFF: {
// param3 : horizontal navigation by pilot acceptable
// param4 : yaw angle (not supported)
// param5 : latitude (not supported)
// param6 : longitude (not supported)
// param7 : altitude [metres]
float takeoff_alt = packet.param7 * 100; // Convert m to cm
if(copter.do_user_takeoff(takeoff_alt, is_zero(packet.param3))) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
break;
}
case MAV_CMD_NAV_LOITER_UNLIM:
if (copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
if (copter.set_mode(RTL, MODE_REASON_GCS_COMMAND)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_NAV_LAND:
if (copter.set_mode(LAND, MODE_REASON_GCS_COMMAND)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_CONDITION_YAW:
// param1 : target angle [0-360]
// param2 : speed during change [deg per second]
// param3 : direction (-1:ccw, +1:cw)
// param4 : relative offset (1) or absolute angle (0)
if ((packet.param1 >= 0.0f) &&
(packet.param1 <= 360.0f) &&
(is_zero(packet.param4) || is_equal(packet.param4,1.0f))) {
copter.set_auto_yaw_look_at_heading(packet.param1, packet.param2, (int8_t)packet.param3, (uint8_t)packet.param4);
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
break;
case MAV_CMD_DO_CHANGE_SPEED:
// param1 : unused
// param2 : new speed in m/s
// param3 : unused
// param4 : unused
if (packet.param2 > 0.0f) {
copter.wp_nav.set_speed_xy(packet.param2 * 100.0f);
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
break;
case MAV_CMD_DO_SET_HOME:
// param1 : use current (1=use current location, 0=use specified location)
// param5 : latitude
// param6 : longitude
// param7 : altitude (absolute)
result = MAV_RESULT_FAILED; // assume failure
if(is_equal(packet.param1,1.0f) || (is_zero(packet.param5) && is_zero(packet.param6) && is_zero(packet.param7))) {
if (copter.set_home_to_current_location_and_lock()) {
result = MAV_RESULT_ACCEPTED;
}
} else {
// sanity check location
if (!check_latlng(packet.param5, packet.param6)) {
break;
}
Location new_home_loc;
new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
new_home_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (!copter.far_from_EKF_origin(new_home_loc)) {
if (copter.set_home_and_lock(new_home_loc)) {
result = MAV_RESULT_ACCEPTED;
}
}
}
break;
case MAV_CMD_DO_FLIGHTTERMINATION:
if (packet.param1 > 0.5f) {
copter.init_disarm_motors();
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_ROI:
// param1 : regional of interest mode (not supported)
// param2 : mission index/ target id (not supported)
// param3 : ROI index (not supported)
// param5 : x / lat
// param6 : y / lon
// param7 : z / alt
// sanity check location
if (!check_latlng(packet.param5, packet.param6)) {
break;
}
Location roi_loc;
roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
roi_loc.alt = (int32_t)(packet.param7 * 100.0f);
copter.set_auto_yaw_roi(roi_loc);
result = MAV_RESULT_ACCEPTED;
break;
#if CAMERA == ENABLED
case MAV_CMD_DO_DIGICAM_CONFIGURE:
copter.camera.configure(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6,
packet.param7);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_DIGICAM_CONTROL:
if (copter.camera.control(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6)) {
copter.log_picture();
}
result = MAV_RESULT_ACCEPTED;
break;
#endif // CAMERA == ENABLED
case MAV_CMD_DO_MOUNT_CONTROL:
#if MOUNT == ENABLED
copter.camera_mount.control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7);
result = MAV_RESULT_ACCEPTED;
#endif
break;
case MAV_CMD_MISSION_START:
if (copter.motors.armed() && copter.set_mode(AUTO, MODE_REASON_GCS_COMMAND)) {
copter.set_auto_armed(true);
if (copter.mission.state() != AP_Mission::MISSION_RUNNING) {
copter.mission.start_or_resume();
}
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
// exit immediately if armed
if (copter.motors.armed()) {
result = MAV_RESULT_FAILED;
break;
}
if (is_equal(packet.param1,1.0f)) {
if (copter.calibrate_gyros()) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (is_equal(packet.param3,1.0f)) {
// fast barometer calibration
copter.init_barometer(false);
result = MAV_RESULT_ACCEPTED;
} else if (is_equal(packet.param4,1.0f)) {
result = MAV_RESULT_UNSUPPORTED;
} else if (is_equal(packet.param5,1.0f)) {
// 3d accel calibration
result = MAV_RESULT_ACCEPTED;
if (!copter.calibrate_gyros()) {
result = MAV_RESULT_FAILED;
break;
}
copter.ins.acal_init();
copter.ins.get_acal()->start(this);
} else if (is_equal(packet.param5,2.0f)) {
// calibrate gyros
if (!copter.calibrate_gyros()) {
result = MAV_RESULT_FAILED;
break;
}
// accel trim
float trim_roll, trim_pitch;
if(copter.ins.calibrate_trim(trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
copter.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (is_equal(packet.param6,1.0f)) {
// compassmot calibration
result = copter.mavlink_compassmot(chan);
}
break;
case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS:
{
uint8_t compassNumber = -1;
if (is_equal(packet.param1, 2.0f)) {
compassNumber = 0;
} else if (is_equal(packet.param1, 5.0f)) {
compassNumber = 1;
} else if (is_equal(packet.param1, 6.0f)) {
compassNumber = 2;
}
if (compassNumber != (uint8_t) -1) {
copter.compass.set_and_save_offsets(compassNumber, packet.param2, packet.param3, packet.param4);
result = MAV_RESULT_ACCEPTED;
}
break;
}
case MAV_CMD_COMPONENT_ARM_DISARM:
if (is_equal(packet.param1,1.0f)) {
// attempt to arm and return success or failure
if (copter.init_arm_motors(true)) {
result = MAV_RESULT_ACCEPTED;
}
} else if (is_zero(packet.param1) && (copter.ap.land_complete || is_equal(packet.param2,21196.0f))) {
// force disarming by setting param2 = 21196 is deprecated
copter.init_disarm_motors();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_GET_HOME_POSITION:
if (copter.ap.home_state != HOME_UNSET) {
send_home(copter.ahrs.get_home());
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
break;
case MAV_CMD_DO_SET_SERVO:
if (copter.ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_SERVO:
if (copter.ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_RELAY:
if (copter.ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_RELAY:
if (copter.ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (is_equal(packet.param1,1.0f) || is_equal(packet.param1,3.0f)) {
AP_Notify::flags.firmware_update = 1;
copter.update_notify();
hal.scheduler->delay(200);
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(is_equal(packet.param1,3.0f));
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_FENCE_ENABLE:
#if AC_FENCE == ENABLED
result = MAV_RESULT_ACCEPTED;
switch ((uint16_t)packet.param1) {
case 0:
copter.fence.enable(false);
break;
case 1:
copter.fence.enable(true);
break;
default:
result = MAV_RESULT_FAILED;
break;
}
#else
// if fence code is not included return failure
result = MAV_RESULT_FAILED;
#endif
break;
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
// configure or release parachute
result = MAV_RESULT_ACCEPTED;
switch ((uint16_t)packet.param1) {
case PARACHUTE_DISABLE:
copter.parachute.enabled(false);
copter.Log_Write_Event(DATA_PARACHUTE_DISABLED);
break;
case PARACHUTE_ENABLE:
copter.parachute.enabled(true);
copter.Log_Write_Event(DATA_PARACHUTE_ENABLED);
break;
case PARACHUTE_RELEASE:
// treat as a manual release which performs some additional check of altitude
copter.parachute_manual_release();
break;
default:
result = MAV_RESULT_FAILED;
break;
}
break;
#endif
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
result = copter.mavlink_motor_test_start(chan, (uint8_t)packet.param1, (uint8_t)packet.param2, (uint16_t)packet.param3, packet.param4);
break;
#if EPM_ENABLED == ENABLED
case MAV_CMD_DO_GRIPPER:
// param1 : gripper number (ignored)
// param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum.
if(!copter.epm.enabled()) {
result = MAV_RESULT_FAILED;
} else {
result = MAV_RESULT_ACCEPTED;
switch ((uint8_t)packet.param2) {
case GRIPPER_ACTION_RELEASE:
copter.epm.release();
break;
case GRIPPER_ACTION_GRAB:
copter.epm.grab();
break;
default:
result = MAV_RESULT_FAILED;
break;
}
}
break;
#endif
case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: {
if (is_equal(packet.param1,1.0f)) {
send_autopilot_version(FIRMWARE_VERSION);
result = MAV_RESULT_ACCEPTED;
}
break;
}
case MAV_CMD_DO_START_MAG_CAL:
case MAV_CMD_DO_ACCEPT_MAG_CAL:
case MAV_CMD_DO_CANCEL_MAG_CAL:
result = copter.compass.handle_mag_cal_command(packet);
break;
case MAV_CMD_DO_SEND_BANNER: {
result = MAV_RESULT_ACCEPTED;
send_text(MAV_SEVERITY_INFO, FIRMWARE_STRING);
#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION)
send_text(MAV_SEVERITY_INFO, "PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION);
#endif
send_text(MAV_SEVERITY_INFO, "Frame: " FRAME_CONFIG_STRING);
// send system ID if we can
char sysid[40];
if (hal.util->get_system_id(sysid)) {
send_text(MAV_SEVERITY_INFO, sysid);
}
break;
}
/* Solo user presses Fly button */
case MAV_CMD_SOLO_BTN_FLY_CLICK: {
result = MAV_RESULT_ACCEPTED;
if (copter.failsafe.radio) {
break;
}
// set mode to Loiter or fall back to AltHold
if (!copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) {
copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND);
}
break;
}
/* Solo user holds down Fly button for a couple of seconds */
case MAV_CMD_SOLO_BTN_FLY_HOLD: {
result = MAV_RESULT_ACCEPTED;
if (copter.failsafe.radio) {
break;
}
if (!copter.motors.armed()) {
// if disarmed, arm motors
copter.init_arm_motors(true);
} else if (copter.ap.land_complete) {
// if armed and landed, takeoff
if (copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) {
copter.do_user_takeoff(packet.param1*100, true);
}
} else {
// if flying, land
copter.set_mode(LAND, MODE_REASON_GCS_COMMAND);
}
break;
}
/* Solo user presses pause button */
case MAV_CMD_SOLO_BTN_PAUSE_CLICK: {
result = MAV_RESULT_ACCEPTED;
if (copter.failsafe.radio) {
break;
}
if (copter.motors.armed()) {
if (copter.ap.land_complete) {
// if landed, disarm motors
copter.init_disarm_motors();
} else {
// assume that shots modes are all done in guided.
// NOTE: this may need to change if we add a non-guided shot mode
bool shot_mode = (!is_zero(packet.param1) && (copter.control_mode == GUIDED || copter.control_mode == GUIDED_NOGPS));
if (!shot_mode) {
if (copter.set_mode(BRAKE, MODE_REASON_GCS_COMMAND)) {
copter.brake_timeout_to_loiter_ms(2500);
} else {
copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND);
}
} else {
// SoloLink is expected to handle pause in shots
}
}
}
break;
}
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
// send ACK or NAK
mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result);
break;
}
case MAVLINK_MSG_ID_COMMAND_ACK: // MAV ID: 77
{
copter.command_ack_counter++;
break;
}
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82
{
// decode packet
mavlink_set_attitude_target_t packet;
mavlink_msg_set_attitude_target_decode(msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if ((copter.control_mode != GUIDED) && (copter.control_mode != GUIDED_NOGPS) && !(copter.control_mode == AUTO && copter.auto_mode == Auto_NavGuided)) {
break;
}
// ensure type_mask specifies to use attitude and thrust
if ((packet.type_mask & ((1<<7)|(1<<6))) != 0) {
break;
}
// convert thrust to climb rate
packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f);
float climb_rate_cms = 0.0f;
if (is_equal(packet.thrust, 0.5f)) {
climb_rate_cms = 0.0f;
} else if (packet.thrust > 0.5f) {
// climb at up to WPNAV_SPEED_UP
climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * copter.wp_nav.get_speed_up();
} else {
// descend at up to WPNAV_SPEED_DN
climb_rate_cms = (0.5f - packet.thrust) * 2.0f * -fabsf(copter.wp_nav.get_speed_down());
}
// if the body_yaw_rate field is ignored, use the commanded yaw position
// otherwise use the commanded yaw rate
bool use_yaw_rate = false;
if ((packet.type_mask & (1<<2)) == 0) {
use_yaw_rate = true;
}
copter.guided_set_angle(Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]),
climb_rate_cms, use_yaw_rate, packet.body_yaw_rate);
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if ((copter.control_mode != GUIDED) && !(copter.control_mode == AUTO && copter.auto_mode == Auto_NavGuided)) {
break;
}
// check for supported coordinate frames
if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED &&
packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) {
break;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
/*
* for future use:
* bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE;
* bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
* bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
*/
// prepare position
Vector3f pos_vector;
if (!pos_ignore) {
// convert to cm
pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
copter.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y);
}
// add body offset if necessary
if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
pos_vector += copter.inertial_nav.get_position();
} else {
// convert from alt-above-home to alt-above-ekf-origin
pos_vector.z = copter.pv_alt_above_origin(pos_vector.z);
}
}
// prepare velocity
Vector3f vel_vector;
if (!vel_ignore) {
// convert to cm
vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
copter.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y);
}
}
// send request
if (!pos_ignore && !vel_ignore && acc_ignore) {
copter.guided_set_destination_posvel(pos_vector, vel_vector);
} else if (pos_ignore && !vel_ignore && acc_ignore) {
copter.guided_set_velocity(vel_vector);
} else if (!pos_ignore && vel_ignore && acc_ignore) {
if (!copter.guided_set_destination(pos_vector)) {
result = MAV_RESULT_FAILED;
}
} else {
result = MAV_RESULT_FAILED;
}
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86
{
// decode packet
mavlink_set_position_target_global_int_t packet;
mavlink_msg_set_position_target_global_int_decode(msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if ((copter.control_mode != GUIDED) && !(copter.control_mode == AUTO && copter.auto_mode == Auto_NavGuided)) {
break;
}
// check for supported coordinate frames
if (packet.coordinate_frame != MAV_FRAME_GLOBAL_INT &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT
packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) {
break;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
/*
* for future use:
* bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE;
* bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
* bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
*/
Vector3f pos_ned;
if(!pos_ignore) {
// sanity check location
if (!check_latlng(packet.lat_int, packet.lon_int)) {
result = MAV_RESULT_FAILED;
break;
}
Location loc;
loc.lat = packet.lat_int;
loc.lng = packet.lon_int;
loc.alt = packet.alt*100;
switch (packet.coordinate_frame) {
case MAV_FRAME_GLOBAL_RELATIVE_ALT: // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
loc.flags.relative_alt = true;
loc.flags.terrain_alt = false;
break;
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
loc.flags.relative_alt = true;
loc.flags.terrain_alt = true;
break;
case MAV_FRAME_GLOBAL_INT:
default:
// Copter does not support navigation to absolute altitudes. This convert the WGS84 altitude
// to a home-relative altitude before passing it to the navigation controller
loc.alt -= copter.ahrs.get_home().alt;
loc.flags.relative_alt = true;
loc.flags.terrain_alt = false;
break;
}
pos_ned = copter.pv_location_to_vector(loc);
}
if (!pos_ignore && !vel_ignore && acc_ignore) {
copter.guided_set_destination_posvel(pos_ned, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f));
} else if (pos_ignore && !vel_ignore && acc_ignore) {
copter.guided_set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f));
} else if (!pos_ignore && vel_ignore && acc_ignore) {
if (!copter.guided_set_destination(pos_ned)) {
result = MAV_RESULT_FAILED;
}
} else {
result = MAV_RESULT_FAILED;
}
break;
}
case MAVLINK_MSG_ID_DISTANCE_SENSOR:
{
result = MAV_RESULT_ACCEPTED;
copter.rangefinder.handle_msg(msg);
break;
}
case MAVLINK_MSG_ID_GPS_RTCM_DATA:
case MAVLINK_MSG_ID_GPS_INPUT:
{
result = MAV_RESULT_ACCEPTED;
copter.gps.handle_msg(msg);
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE: // MAV ID: 90
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
// sanity check location
if (!check_latlng(packet.lat, packet.lon)) {
break;
}
// set gps hil sensor
Location loc;
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt/10;
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
packet.time_usec/1000,
loc, vel, 10, 0);
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * (GRAVITY_MSS/1000.0f);
accels.y = packet.yacc * (GRAVITY_MSS/1000.0f);
accels.z = packet.zacc * (GRAVITY_MSS/1000.0f);
ins.set_gyro(0, gyros);
ins.set_accel(0, accels);
copter.barometer.setHIL(packet.alt*0.001f);
copter.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw);
copter.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw);
break;
}
#endif // HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS: // MAV ID: 109
{
handle_radio_status(msg, copter.DataFlash, copter.should_log(MASK_LOG_PM));
break;
}
case MAVLINK_MSG_ID_LOG_REQUEST_DATA:
case MAVLINK_MSG_ID_LOG_ERASE:
copter.in_log_download = true;
/* no break */
case MAVLINK_MSG_ID_LOG_REQUEST_LIST:
if (!copter.in_mavlink_delay && !copter.motors.armed()) {
handle_log_message(msg, copter.DataFlash);
}
break;
case MAVLINK_MSG_ID_LOG_REQUEST_END:
copter.in_log_download = false;
if (!copter.in_mavlink_delay && !copter.motors.armed()) {
handle_log_message(msg, copter.DataFlash);
}
break;
case MAVLINK_MSG_ID_SERIAL_CONTROL:
handle_serial_control(msg, copter.gps);
break;
case MAVLINK_MSG_ID_GPS_INJECT_DATA:
handle_gps_inject(msg, copter.gps);
result = MAV_RESULT_ACCEPTED;
break;
#if PRECISION_LANDING == ENABLED
case MAVLINK_MSG_ID_LANDING_TARGET:
// configure or release parachute
result = MAV_RESULT_ACCEPTED;
copter.precland.handle_msg(msg);
break;
#endif
#if AC_FENCE == ENABLED
// send or receive fence points with GCS
case MAVLINK_MSG_ID_FENCE_POINT: // MAV ID: 160
case MAVLINK_MSG_ID_FENCE_FETCH_POINT:
copter.fence.handle_msg(chan, msg);
break;
#endif // AC_FENCE == ENABLED
#if CAMERA == ENABLED
//deprecated. Use MAV_CMD_DO_DIGICAM_CONFIGURE
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE: // MAV ID: 202
break;
//deprecated. Use MAV_CMD_DO_DIGICAM_CONTROL
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
copter.camera.control_msg(msg);
copter.log_picture();
break;
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
//deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE
case MAVLINK_MSG_ID_MOUNT_CONFIGURE: // MAV ID: 204
copter.camera_mount.configure_msg(msg);
break;
//deprecated. Use MAV_CMD_DO_MOUNT_CONTROL
case MAVLINK_MSG_ID_MOUNT_CONTROL:
copter.camera_mount.control_msg(msg);
break;
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
copter.terrain.handle_data(chan, msg);
#endif
break;
#if AC_RALLY == ENABLED
// receive a rally point from GCS and store in EEPROM
case MAVLINK_MSG_ID_RALLY_POINT: {
mavlink_rally_point_t packet;
mavlink_msg_rally_point_decode(msg, &packet);
if (packet.idx >= copter.rally.get_rally_total() ||
packet.idx >= copter.rally.get_rally_max()) {
send_text(MAV_SEVERITY_NOTICE,"Bad rally point message ID");
break;
}
if (packet.count != copter.rally.get_rally_total()) {
send_text(MAV_SEVERITY_NOTICE,"Bad rally point message count");
break;
}
// sanity check location
if (!check_latlng(packet.lat, packet.lng)) {
break;
}
RallyLocation rally_point;
rally_point.lat = packet.lat;
rally_point.lng = packet.lng;
rally_point.alt = packet.alt;
rally_point.break_alt = packet.break_alt;
rally_point.land_dir = packet.land_dir;
rally_point.flags = packet.flags;
if (!copter.rally.set_rally_point_with_index(packet.idx, rally_point)) {
send_text(MAV_SEVERITY_CRITICAL, "Error setting rally point");
}
break;
}
//send a rally point to the GCS
case MAVLINK_MSG_ID_RALLY_FETCH_POINT: {
mavlink_rally_fetch_point_t packet;
mavlink_msg_rally_fetch_point_decode(msg, &packet);
if (packet.idx > copter.rally.get_rally_total()) {
send_text(MAV_SEVERITY_NOTICE, "Bad rally point index");
break;
}
RallyLocation rally_point;
if (!copter.rally.get_rally_point_with_index(packet.idx, rally_point)) {
send_text(MAV_SEVERITY_NOTICE, "Failed to set rally point");
break;
}
mavlink_msg_rally_point_send_buf(msg,
chan, msg->sysid, msg->compid, packet.idx,
copter.rally.get_rally_total(), rally_point.lat, rally_point.lng,
rally_point.alt, rally_point.break_alt, rally_point.land_dir,
rally_point.flags);
break;
}
#endif // AC_RALLY == ENABLED
case MAVLINK_MSG_ID_REMOTE_LOG_BLOCK_STATUS:
copter.DataFlash.remote_log_block_status_msg(chan, msg);
break;
case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST:
send_autopilot_version(FIRMWARE_VERSION);
break;
case MAVLINK_MSG_ID_LED_CONTROL:
// send message to Notify
AP_Notify::handle_led_control(msg);
break;
case MAVLINK_MSG_ID_PLAY_TUNE:
// send message to Notify
AP_Notify::handle_play_tune(msg);
break;
case MAVLINK_MSG_ID_SET_HOME_POSITION:
{
mavlink_set_home_position_t packet;
mavlink_msg_set_home_position_decode(msg, &packet);
if((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) {
copter.set_home_to_current_location_and_lock();
} else {
// sanity check location
if (!check_latlng(packet.latitude, packet.longitude)) {
break;
}
Location new_home_loc;
new_home_loc.lat = packet.latitude;
new_home_loc.lng = packet.longitude;
new_home_loc.alt = packet.altitude / 10;
if (copter.far_from_EKF_origin(new_home_loc)) {
break;
}
copter.set_home_and_lock(new_home_loc);
}
break;
}
case MAVLINK_MSG_ID_ADSB_VEHICLE:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT:
#if ADSB_ENABLED == ENABLED
copter.adsb.handle_message(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_SETUP_SIGNING:
handle_setup_signing(msg);
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
void Copter::mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs[0].initialised || in_mavlink_delay) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_heartbeat();
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_check_input();
gcs_data_stream_send();
gcs_send_deferred();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text(MAV_SEVERITY_INFO, "Initialising APM");
}
check_usb_mux();
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
void Copter::gcs_send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_message(id);
}
}
}
/*
* send a mission item reached message and load the index before the send attempt in case it may get delayed
*/
void Copter::gcs_send_mission_item_reached_message(uint16_t mission_index)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].mission_item_reached_index = mission_index;
gcs[i].send_message(MSG_MISSION_ITEM_REACHED);
}
}
}
/*
* send data streams in the given rate range on both links
*/
void Copter::gcs_data_stream_send(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].data_stream_send();
}
}
}
/*
* look for incoming commands on the GCS links
*/
void Copter::gcs_check_input(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
#if CLI_ENABLED == ENABLED
gcs[i].update(g.cli_enabled==1?FUNCTOR_BIND_MEMBER(&Copter::run_cli, void, AP_HAL::UARTDriver *):NULL);
#else
gcs[i].update(NULL);
#endif
}
}
}
void Copter::gcs_send_text(MAV_SEVERITY severity, const char *str)
{
GCS_MAVLINK::send_statustext(severity, 0xFF, str);
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void Copter::gcs_send_text_fmt(MAV_SEVERITY severity, const char *fmt, ...)
{
char str[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN] {};
va_list arg_list;
va_start(arg_list, fmt);
va_end(arg_list);
hal.util->vsnprintf((char *)str, sizeof(str), fmt, arg_list);
GCS_MAVLINK::send_statustext(severity, 0xFF, str);
}
/*
return true if we will accept this packet. Used to implement SYSID_ENFORCE
*/
bool GCS_MAVLINK_Copter::accept_packet(const mavlink_status_t &status, mavlink_message_t &msg)
{
if (!copter.g2.sysid_enforce) {
return true;
}
if (msg.msgid == MAVLINK_MSG_ID_RADIO || msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) {
return true;
}
return (msg.sysid == copter.g.sysid_my_gcs);
}