ardupilot/libraries/AP_Motors/AP_MotorsTri.cpp
2015-09-29 12:01:14 +09:00

358 lines
13 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsTri.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_MotorsTri.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsTri::var_info[] PROGMEM = {
// variables from parent vehicle
AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0),
// parameters 1 ~ 29 were reserved for tradheli
// parameters 30 ~ 39 reserved for tricopter
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files)
// @Param: YAW_SV_REV
// @DisplayName: Yaw Servo Reverse
// @Description: Yaw servo reversing. Set to 1 for normal (forward) operation. Set to -1 to reverse this channel.
// @Values: -1:Reversed,1:Normal
// @User: Standard
AP_GROUPINFO("YAW_SV_REV", 31, AP_MotorsTri, _yaw_servo_reverse, 1),
// @Param: YAW_SV_TRIM
// @DisplayName: Yaw Servo Trim/Center
// @Description: Trim or center position of yaw servo
// @Range: 1250 1750
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("YAW_SV_TRIM", 32, AP_MotorsTri, _yaw_servo_trim, 1500),
// @Param: YAW_SV_MIN
// @DisplayName: Yaw Servo Min Position
// @Description: Minimum angle limit of yaw servo
// @Range: 1000 1400
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("YAW_SV_MIN", 33, AP_MotorsTri, _yaw_servo_min, 1250),
// @Param: YAW_SV_MAX
// @DisplayName: Yaw Servo Max Position
// @Description: Maximum angle limit of yaw servo
// @Range: 1600 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("YAW_SV_MAX", 34, AP_MotorsTri, _yaw_servo_max, 1750),
AP_GROUPEND
};
// init
void AP_MotorsTri::Init()
{
// set update rate for the 3 motors (but not the servo on channel 7)
set_update_rate(_speed_hz);
// set the motor_enabled flag so that the ESCs can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_1] = true;
motor_enabled[AP_MOTORS_MOT_2] = true;
motor_enabled[AP_MOTORS_MOT_4] = true;
// disable CH7 from being used as an aux output (i.e. for camera gimbal, etc)
RC_Channel_aux::disable_aux_channel(AP_MOTORS_CH_TRI_YAW);
}
// set update rate to motors - a value in hertz
void AP_MotorsTri::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// set update rate for the 3 motors (but not the servo on channel 7)
uint32_t mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_4;
hal.rcout->set_freq(mask, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsTri::enable()
{
// enable output channels
hal.rcout->enable_ch(AP_MOTORS_MOT_1);
hal.rcout->enable_ch(AP_MOTORS_MOT_2);
hal.rcout->enable_ch(AP_MOTORS_MOT_4);
hal.rcout->enable_ch(AP_MOTORS_CH_TRI_YAW);
}
// output_min - sends minimum values out to the motors
void AP_MotorsTri::output_min()
{
// set lower limit flag
limit.throttle_lower = true;
// send minimum value to each motor
hal.rcout->write(AP_MOTORS_MOT_1, _throttle_radio_min);
hal.rcout->write(AP_MOTORS_MOT_2, _throttle_radio_min);
hal.rcout->write(AP_MOTORS_MOT_4, _throttle_radio_min);
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _yaw_servo_trim);
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsTri::get_motor_mask()
{
// tri copter uses channels 1,2,4 and 7
return (1U << AP_MOTORS_MOT_1) |
(1U << AP_MOTORS_MOT_2) |
(1U << AP_MOTORS_MOT_4) |
(1U << AP_MOTORS_CH_TRI_YAW);
}
void AP_MotorsTri::output_armed_not_stabilizing()
{
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
int16_t out_min = _throttle_radio_min + _min_throttle;
int16_t out_max = _throttle_radio_max;
int16_t motor_out[AP_MOTORS_MOT_4+1];
// initialize limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = false;
limit.throttle_upper = false;
int16_t thr_in_min = rel_pwm_to_thr_range(_spin_when_armed_ramped);
if (_throttle_control_input <= thr_in_min) {
_throttle_control_input = thr_in_min;
limit.throttle_lower = true;
}
if (_throttle_control_input >= _hover_out) {
_throttle_control_input = _hover_out;
limit.throttle_upper = true;
}
throttle_radio_output = calc_throttle_radio_output();
motor_out[AP_MOTORS_MOT_1] = throttle_radio_output;
motor_out[AP_MOTORS_MOT_2] = throttle_radio_output;
motor_out[AP_MOTORS_MOT_4] = throttle_radio_output;
if(throttle_radio_output >= out_min) {
// adjust for thrust curve and voltage scaling
motor_out[AP_MOTORS_MOT_1] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_1], out_min, out_max);
motor_out[AP_MOTORS_MOT_2] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_2], out_min, out_max);
motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, out_max);
}
// send output to each motor
hal.rcout->write(AP_MOTORS_MOT_1, motor_out[AP_MOTORS_MOT_1]);
hal.rcout->write(AP_MOTORS_MOT_2, motor_out[AP_MOTORS_MOT_2]);
hal.rcout->write(AP_MOTORS_MOT_4, motor_out[AP_MOTORS_MOT_4]);
// send centering signal to yaw servo
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _yaw_servo_trim);
}
// sends commands to the motors
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
void AP_MotorsTri::output_armed_stabilizing()
{
int16_t roll_pwm; // roll pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
int16_t pitch_pwm; // pitch pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
int16_t yaw_radio_output; // final yaw pwm value sent to motors, typically ~1100-1900
int16_t out_min = _throttle_radio_min + _min_throttle;
int16_t out_max = _throttle_radio_max;
int16_t motor_out[AP_MOTORS_MOT_4+1];
// initialize limits flags
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// Throttle is 0 to 1000 only
int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle);
if (_throttle_control_input <= thr_in_min) {
_throttle_control_input = thr_in_min;
limit.throttle_lower = true;
}
if (_throttle_control_input >= _max_throttle) {
_throttle_control_input = _max_throttle;
limit.throttle_upper = true;
}
// tricopters limit throttle to 80%
// To-Do: implement improved stability patch and remove this limit
if (_throttle_control_input > 800) {
_throttle_control_input = 800;
limit.throttle_upper = true;
}
roll_pwm = calc_roll_pwm();
pitch_pwm = calc_pitch_pwm();
throttle_radio_output = calc_throttle_radio_output();
yaw_radio_output = calc_yaw_radio_output();
// if we are not sending a throttle output, we cut the motors
if( is_zero(_throttle_control_input) ) {
// range check spin_when_armed
if (_spin_when_armed_ramped < 0) {
_spin_when_armed_ramped = 0;
}
if (_spin_when_armed_ramped > _min_throttle) {
_spin_when_armed_ramped = _min_throttle;
}
motor_out[AP_MOTORS_MOT_1] = _throttle_radio_min + _spin_when_armed_ramped;
motor_out[AP_MOTORS_MOT_2] = _throttle_radio_min + _spin_when_armed_ramped;
motor_out[AP_MOTORS_MOT_4] = _throttle_radio_min + _spin_when_armed_ramped;
}else{
int16_t roll_out = (float)(roll_pwm * 0.866f);
int16_t pitch_out = pitch_pwm / 2;
// check if throttle is below limit
if (_throttle_control_input <= _min_throttle) {
limit.throttle_lower = true;
_throttle_control_input = _min_throttle;
throttle_radio_output = calc_throttle_radio_output();
}
// TODO: set limits.roll_pitch and limits.yaw
//left front
motor_out[AP_MOTORS_MOT_2] = throttle_radio_output + roll_out + pitch_out;
//right front
motor_out[AP_MOTORS_MOT_1] = throttle_radio_output - roll_out + pitch_out;
// rear
motor_out[AP_MOTORS_MOT_4] = throttle_radio_output - pitch_pwm;
// Tridge's stability patch
if(motor_out[AP_MOTORS_MOT_1] > out_max) {
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max);
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max);
motor_out[AP_MOTORS_MOT_1] = out_max;
}
if(motor_out[AP_MOTORS_MOT_2] > out_max) {
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max);
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max);
motor_out[AP_MOTORS_MOT_2] = out_max;
}
if(motor_out[AP_MOTORS_MOT_4] > out_max) {
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max);
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max);
motor_out[AP_MOTORS_MOT_4] = out_max;
}
// adjust for thrust curve and voltage scaling
motor_out[AP_MOTORS_MOT_1] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_1], out_min, out_max);
motor_out[AP_MOTORS_MOT_2] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_2], out_min, out_max);
motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, out_max);
// ensure motors don't drop below a minimum value and stop
motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min);
motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min);
motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min);
}
// send output to each motor
hal.rcout->write(AP_MOTORS_MOT_1, motor_out[AP_MOTORS_MOT_1]);
hal.rcout->write(AP_MOTORS_MOT_2, motor_out[AP_MOTORS_MOT_2]);
hal.rcout->write(AP_MOTORS_MOT_4, motor_out[AP_MOTORS_MOT_4]);
// send out to yaw command to tail servo
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, yaw_radio_output);
}
// output_disarmed - sends commands to the motors
void AP_MotorsTri::output_disarmed()
{
// Send minimum values to all motors
output_min();
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsTri::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// front right motor
hal.rcout->write(AP_MOTORS_MOT_1, pwm);
break;
case 2:
// back motor
hal.rcout->write(AP_MOTORS_MOT_4, pwm);
break;
case 3:
// back servo
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, pwm);
break;
case 4:
// front left motor
hal.rcout->write(AP_MOTORS_MOT_2, pwm);
break;
default:
// do nothing
break;
}
}
// calc_yaw_radio_output - calculate final radio output for yaw channel
int16_t AP_MotorsTri::calc_yaw_radio_output()
{
int16_t ret;
if (_yaw_servo_reverse < 0) {
if (_yaw_control_input >= 0){
ret = (_yaw_servo_trim - (_yaw_control_input/4500 * (_yaw_servo_trim - _yaw_servo_min)));
} else {
ret = (_yaw_servo_trim - (_yaw_control_input/4500 * (_yaw_servo_max - _yaw_servo_trim)));
}
} else {
if (_yaw_control_input >= 0){
ret = ((_yaw_control_input/4500 * (_yaw_servo_max - _yaw_servo_trim)) + _yaw_servo_trim);
} else {
ret = ((_yaw_control_input/4500 * (_yaw_servo_trim - _yaw_servo_min)) + _yaw_servo_trim);
}
}
return ret;
}