ardupilot/libraries/AP_Math/examples/location/location.cpp
Gustavo Jose de Sousa 535273161e AP_Math: standardize inclusion of libaries headers
This commit changes the way libraries headers are included in source files:

 - If the header is in the same directory the source belongs to, so the
 notation '#include ""' is used with the path relative to the directory
 containing the source.

 - If the header is outside the directory containing the source, then we use
 the notation '#include <>' with the path relative to libraries folder.

Some of the advantages of such approach:

 - Only one search path for libraries headers.

 - OSs like Windows may have a better lookup time.
2015-08-19 20:42:51 +09:00

373 lines
12 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//
// Unit tests for the AP_Math polygon code
//
#include <AP_Common/AP_Common.h>
#include <AP_Progmem/AP_Progmem.h>
#include <AP_Param/AP_Param.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <Filter/Filter.h>
#include <AP_ADC/AP_ADC.h>
#include <AP_Notify/AP_Notify.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <AP_GPS/AP_GPS.h>
#include <DataFlash/DataFlash.h>
#include <AP_Baro/AP_Baro.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_Mission/AP_Mission.h>
#include <StorageManager/StorageManager.h>
#include <AP_Terrain/AP_Terrain.h>
#include <AP_Declination/AP_Declination.h>
#include <AP_Rally/AP_Rally.h>
#include <AP_OpticalFlow/AP_OpticalFlow.h>
#include <AP_HAL_AVR/AP_HAL_AVR.h>
#include <AP_HAL_SITL/AP_HAL_SITL.h>
#include <AP_HAL_Empty/AP_HAL_Empty.h>
#include <AP_HAL_Linux/AP_HAL_Linux.h>
#include <AP_AHRS/AP_AHRS.h>
#include <SITL/SITL.h>
#include <AP_NavEKF/AP_NavEKF.h>
#include <AP_Airspeed/AP_Airspeed.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_ADC_AnalogSource/AP_ADC_AnalogSource.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
static const struct {
Vector2f wp1, wp2, location;
bool passed;
} test_points[] = {
{ Vector2f(-35.3647759314918f, 149.16265692810987f),
Vector2f(-35.36279922658029f, 149.16352169591426f),
Vector2f(-35.36214956969903f, 149.16461410046492f), true },
{ Vector2f(-35.36438601157189f, 149.16613916088568f),
Vector2f(-35.364432558610254f, 149.16287313113048f),
Vector2f(-35.36491510034746f, 149.16365837225004f), false },
{ Vector2f(0, 0),
Vector2f(0, 1),
Vector2f(0, 2), true },
{ Vector2f(0, 0),
Vector2f(0, 2),
Vector2f(0, 1), false },
{ Vector2f(0, 0),
Vector2f(1, 0),
Vector2f(2, 0), true },
{ Vector2f(0, 0),
Vector2f(2, 0),
Vector2f(1, 0), false },
{ Vector2f(0, 0),
Vector2f(-1, 1),
Vector2f(-2, 2), true },
};
static struct Location location_from_point(Vector2f pt)
{
struct Location loc = {0};
loc.lat = pt.x * 1.0e7f;
loc.lng = pt.y * 1.0e7f;
return loc;
}
static void test_passed_waypoint(void)
{
hal.console->println("waypoint tests starting");
for (uint8_t i=0; i<ARRAY_SIZE(test_points); i++) {
struct Location loc = location_from_point(test_points[i].location);
struct Location wp1 = location_from_point(test_points[i].wp1);
struct Location wp2 = location_from_point(test_points[i].wp2);
if (location_passed_point(loc, wp1, wp2) != test_points[i].passed) {
hal.console->printf("Failed waypoint test %u\n", (unsigned)i);
return;
}
}
hal.console->println("waypoint tests OK");
}
static void test_one_offset(const struct Location &loc,
float ofs_north, float ofs_east,
float dist, float bearing)
{
struct Location loc2;
float dist2, bearing2;
loc2 = loc;
uint32_t t1 = hal.scheduler->micros();
location_offset(loc2, ofs_north, ofs_east);
hal.console->printf("location_offset took %u usec\n",
(unsigned)(hal.scheduler->micros() - t1));
dist2 = get_distance(loc, loc2);
bearing2 = get_bearing_cd(loc, loc2) * 0.01f;
float brg_error = bearing2-bearing;
if (brg_error > 180) {
brg_error -= 360;
} else if (brg_error < -180) {
brg_error += 360;
}
if (fabsf(dist - dist2) > 1.0f ||
brg_error > 1.0f) {
hal.console->printf("Failed offset test brg_error=%f dist_error=%f\n",
brg_error, dist-dist2);
}
}
static const struct {
float ofs_north, ofs_east, distance, bearing;
} test_offsets[] = {
{ 1000, 1000, sqrt(2.0f)*1000, 45 },
{ 1000, -1000, sqrt(2.0f)*1000, -45 },
{ 1000, 0, 1000, 0 },
{ 0, 1000, 1000, 90 },
};
static void test_offset(void)
{
struct Location loc;
loc.lat = -35*1.0e7f;
loc.lng = 149*1.0e7f;
for (uint8_t i=0; i<ARRAY_SIZE(test_offsets); i++) {
test_one_offset(loc,
test_offsets[i].ofs_north,
test_offsets[i].ofs_east,
test_offsets[i].distance,
test_offsets[i].bearing);
}
}
/*
test position accuracy for floating point versus integer positions
*/
static void test_accuracy(void)
{
struct Location loc;
loc.lat = 0.0e7f;
loc.lng = -120.0e7f;
struct Location loc2 = loc;
Vector2f v((loc.lat*1.0e-7f), (loc.lng*1.0e-7f));
Vector2f v2;
loc2 = loc;
loc2.lat += 10000000;
v2 = Vector2f(loc2.lat*1.0e-7f, loc2.lng*1.0e-7f);
hal.console->printf("1 degree lat dist=%.4f\n", get_distance(loc, loc2));
loc2 = loc;
loc2.lng += 10000000;
v2 = Vector2f(loc2.lat*1.0e-7f, loc2.lng*1.0e-7f);
hal.console->printf("1 degree lng dist=%.4f\n", get_distance(loc, loc2));
for (int32_t i=0; i<100; i++) {
loc2 = loc;
loc2.lat += i;
v2 = Vector2f((loc.lat+i)*1.0e-7f, loc.lng*1.0e-7f);
if (v2.x != v.x || v2.y != v.y) {
hal.console->printf("lat v2 != v at i=%d dist=%.4f\n", (int)i, get_distance(loc, loc2));
break;
}
}
for (int32_t i=0; i<100; i++) {
loc2 = loc;
loc2.lng += i;
v2 = Vector2f(loc.lat*1.0e-7f, (loc.lng+i)*1.0e-7f);
if (v2.x != v.x || v2.y != v.y) {
hal.console->printf("lng v2 != v at i=%d dist=%.4f\n", (int)i, get_distance(loc, loc2));
break;
}
}
for (int32_t i=0; i<100; i++) {
loc2 = loc;
loc2.lat -= i;
v2 = Vector2f((loc.lat-i)*1.0e-7f, loc.lng*1.0e-7f);
if (v2.x != v.x || v2.y != v.y) {
hal.console->printf("-lat v2 != v at i=%d dist=%.4f\n", (int)i, get_distance(loc, loc2));
break;
}
}
for (int32_t i=0; i<100; i++) {
loc2 = loc;
loc2.lng -= i;
v2 = Vector2f(loc.lat*1.0e-7f, (loc.lng-i)*1.0e-7f);
if (v2.x != v.x || v2.y != v.y) {
hal.console->printf("-lng v2 != v at i=%d dist=%.4f\n", (int)i, get_distance(loc, loc2));
break;
}
}
}
static const struct {
int32_t v, wv;
} wrap_180_tests[] = {
{ 32000, -4000 },
{ 1500 + 100*36000, 1500 },
{ -1500 - 100*36000, -1500 },
};
static const struct {
int32_t v, wv;
} wrap_360_tests[] = {
{ 32000, 32000 },
{ 1500 + 100*36000, 1500 },
{ -1500 - 100*36000, 34500 },
};
static const struct {
float v, wv;
} wrap_PI_tests[] = {
{ 0.2f*PI, 0.2f*PI },
{ 0.2f*PI + 100*PI, 0.2f*PI },
{ -0.2f*PI - 100*PI, -0.2f*PI },
};
static void test_wrap_cd(void)
{
for (uint8_t i=0; i < ARRAY_SIZE(wrap_180_tests); i++) {
int32_t r = wrap_180_cd(wrap_180_tests[i].v);
if (r != wrap_180_tests[i].wv) {
hal.console->printf("wrap_180: v=%ld wv=%ld r=%ld\n",
(long)wrap_180_tests[i].v,
(long)wrap_180_tests[i].wv,
(long)r);
}
}
for (uint8_t i=0; i < ARRAY_SIZE(wrap_360_tests); i++) {
int32_t r = wrap_360_cd(wrap_360_tests[i].v);
if (r != wrap_360_tests[i].wv) {
hal.console->printf("wrap_360: v=%ld wv=%ld r=%ld\n",
(long)wrap_360_tests[i].v,
(long)wrap_360_tests[i].wv,
(long)r);
}
}
for (uint8_t i=0; i < ARRAY_SIZE(wrap_PI_tests); i++) {
float r = wrap_PI(wrap_PI_tests[i].v);
if (fabsf(r - wrap_PI_tests[i].wv) > 0.001f) {
hal.console->printf("wrap_PI: v=%f wv=%f r=%f\n",
wrap_PI_tests[i].v,
wrap_PI_tests[i].wv,
r);
}
}
hal.console->printf("wrap_cd tests done\n");
}
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
static void test_wgs_conversion_functions(void)
{
#define D2R DEG_TO_RAD_DOUBLE
/* Maximum allowable error in quantities with units of length (in meters). */
#define MAX_DIST_ERROR_M 1e-6
/* Maximum allowable error in quantities with units of angle (in sec of arc).
* 1 second of arc on the equator is ~31 meters. */
#define MAX_ANGLE_ERROR_SEC 1e-7
#define MAX_ANGLE_ERROR_RAD (MAX_ANGLE_ERROR_SEC*(D2R/3600.0))
/* Semi-major axis. */
#define EARTH_A 6378137.0
/* Semi-minor axis. */
#define EARTH_B 6356752.31424517929553985595703125
#define NUM_COORDS 10
Vector3d llhs[NUM_COORDS];
llhs[0] = Vector3d(0, 0, 0); /* On the Equator and Prime Meridian. */
llhs[1] = Vector3d(0, 180*D2R, 0); /* On the Equator. */
llhs[2] = Vector3d(0, 90*D2R, 0); /* On the Equator. */
llhs[3] = Vector3d(0, -90*D2R, 0); /* On the Equator. */
llhs[4] = Vector3d(90*D2R, 0, 0); /* North pole. */
llhs[5] = Vector3d(-90*D2R, 0, 0); /* South pole. */
llhs[6] = Vector3d(90*D2R, 0, 22); /* 22m above the north pole. */
llhs[7] = Vector3d(-90*D2R, 0, 22); /* 22m above the south pole. */
llhs[8] = Vector3d(0, 0, 22); /* 22m above the Equator and Prime Meridian. */
llhs[9] = Vector3d(0, 180*D2R, 22); /* 22m above the Equator. */
Vector3d ecefs[NUM_COORDS];
ecefs[0] = Vector3d(EARTH_A, 0, 0);
ecefs[1] = Vector3d(-EARTH_A, 0, 0);
ecefs[2] = Vector3d(0, EARTH_A, 0);
ecefs[3] = Vector3d(0, -EARTH_A, 0);
ecefs[4] = Vector3d(0, 0, EARTH_B);
ecefs[5] = Vector3d(0, 0, -EARTH_B);
ecefs[6] = Vector3d(0, 0, (EARTH_B+22));
ecefs[7] = Vector3d(0, 0, -(EARTH_B+22));
ecefs[8] = Vector3d((22+EARTH_A), 0, 0);
ecefs[9] = Vector3d(-(22+EARTH_A), 0, 0);
hal.console->printf("TESTING wgsllh2ecef\n");
for (int i = 0; i < NUM_COORDS; i++) {
Vector3d ecef;
wgsllh2ecef(llhs[i], ecef);
double x_err = fabs(ecef[0] - ecefs[i][0]);
double y_err = fabs(ecef[1] - ecefs[i][1]);
double z_err = fabs(ecef[2] - ecefs[i][2]);
if ((x_err < MAX_DIST_ERROR_M) &&
(y_err < MAX_DIST_ERROR_M) &&
(z_err < MAX_DIST_ERROR_M)) {
hal.console->printf("passing llh to ecef test %d\n", i);
} else {
hal.console->printf("failed llh to ecef test %d: ", i);
hal.console->printf("(%f - %f) (%f - %f) (%f - %f) => %.10f %.10f %.10f\n", ecef[0], ecefs[i][0], ecef[1], ecefs[i][1], ecef[2], ecefs[i][2], x_err, y_err, z_err);
}
}
hal.console->printf("TESTING wgsecef2llh\n");
for (int i = 0; i < NUM_COORDS; i++) {
Vector3d llh;
wgsecef2llh(ecefs[i], llh);
double lat_err = fabs(llh[0] - llhs[i][0]);
double lon_err = fabs(llh[1] - llhs[i][1]);
double hgt_err = fabs(llh[2] - llhs[i][2]);
if ((lat_err < MAX_ANGLE_ERROR_RAD) &&
(lon_err < MAX_ANGLE_ERROR_RAD) &&
(hgt_err < MAX_DIST_ERROR_M)) {
hal.console->printf("passing exef to llh test %d\n", i);
} else {
hal.console->printf("failed ecef to llh test %d: ", i);
hal.console->printf("%.10f %.10f %.10f\n", lat_err, lon_err, hgt_err);
}
}
}
#endif //HAL_CPU_CLASS
/*
* polygon tests
*/
void setup(void)
{
test_passed_waypoint();
test_offset();
test_accuracy();
test_wrap_cd();
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
test_wgs_conversion_functions();
#endif
hal.console->printf("ALL TESTS DONE\n");
}
void loop(void){}
AP_HAL_MAIN();