mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 13:18:28 -04:00
496 lines
19 KiB
C++
496 lines
19 KiB
C++
#include "Copter.h"
|
|
|
|
/*
|
|
* Init and run calls for RTL flight mode
|
|
*
|
|
* There are two parts to RTL, the high level decision making which controls which state we are in
|
|
* and the lower implementation of the waypoint or landing controllers within those states
|
|
*/
|
|
|
|
// rtl_init - initialise rtl controller
|
|
bool Copter::rtl_init(bool ignore_checks)
|
|
{
|
|
if (position_ok() || ignore_checks) {
|
|
// initialise waypoint and spline controller
|
|
wp_nav->wp_and_spline_init();
|
|
rtl_build_path(!failsafe.terrain);
|
|
rtl_climb_start();
|
|
return true;
|
|
}else{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// re-start RTL with terrain following disabled
|
|
void Copter::rtl_restart_without_terrain()
|
|
{
|
|
// log an error
|
|
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_RESTARTED_RTL);
|
|
if (rtl_path.terrain_used) {
|
|
rtl_build_path(false);
|
|
rtl_climb_start();
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL,"Restarting RTL - Terrain data missing");
|
|
}
|
|
}
|
|
|
|
// rtl_run - runs the return-to-launch controller
|
|
// should be called at 100hz or more
|
|
void Copter::rtl_run()
|
|
{
|
|
// check if we need to move to next state
|
|
if (rtl_state_complete) {
|
|
switch (rtl_state) {
|
|
case RTL_InitialClimb:
|
|
rtl_return_start();
|
|
break;
|
|
case RTL_ReturnHome:
|
|
rtl_loiterathome_start();
|
|
break;
|
|
case RTL_LoiterAtHome:
|
|
if (rtl_path.land || failsafe.radio) {
|
|
rtl_land_start();
|
|
}else{
|
|
rtl_descent_start();
|
|
}
|
|
break;
|
|
case RTL_FinalDescent:
|
|
// do nothing
|
|
break;
|
|
case RTL_Land:
|
|
// do nothing - rtl_land_run will take care of disarming motors
|
|
break;
|
|
}
|
|
}
|
|
|
|
// call the correct run function
|
|
switch (rtl_state) {
|
|
|
|
case RTL_InitialClimb:
|
|
rtl_climb_return_run();
|
|
break;
|
|
|
|
case RTL_ReturnHome:
|
|
rtl_climb_return_run();
|
|
break;
|
|
|
|
case RTL_LoiterAtHome:
|
|
rtl_loiterathome_run();
|
|
break;
|
|
|
|
case RTL_FinalDescent:
|
|
rtl_descent_run();
|
|
break;
|
|
|
|
case RTL_Land:
|
|
rtl_land_run();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// rtl_climb_start - initialise climb to RTL altitude
|
|
void Copter::rtl_climb_start()
|
|
{
|
|
rtl_state = RTL_InitialClimb;
|
|
rtl_state_complete = false;
|
|
|
|
// RTL_SPEED == 0 means use WPNAV_SPEED
|
|
if (g.rtl_speed_cms != 0) {
|
|
wp_nav->set_speed_xy(g.rtl_speed_cms);
|
|
}
|
|
|
|
// set the destination
|
|
if (!wp_nav->set_wp_destination(rtl_path.climb_target)) {
|
|
// this should not happen because rtl_build_path will have checked terrain data was available
|
|
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_TO_SET_DESTINATION);
|
|
set_mode(LAND, MODE_REASON_TERRAIN_FAILSAFE);
|
|
return;
|
|
}
|
|
wp_nav->set_fast_waypoint(true);
|
|
|
|
// hold current yaw during initial climb
|
|
set_auto_yaw_mode(AUTO_YAW_HOLD);
|
|
}
|
|
|
|
// rtl_return_start - initialise return to home
|
|
void Copter::rtl_return_start()
|
|
{
|
|
rtl_state = RTL_ReturnHome;
|
|
rtl_state_complete = false;
|
|
|
|
if (!wp_nav->set_wp_destination(rtl_path.return_target)) {
|
|
// failure must be caused by missing terrain data, restart RTL
|
|
rtl_restart_without_terrain();
|
|
}
|
|
|
|
// initialise yaw to point home (maybe)
|
|
set_auto_yaw_mode(get_default_auto_yaw_mode(true));
|
|
}
|
|
|
|
// rtl_climb_return_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
|
|
// called by rtl_run at 100hz or more
|
|
void Copter::rtl_climb_return_run()
|
|
{
|
|
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
|
|
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
|
|
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
|
|
// call attitude controller
|
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
|
|
attitude_control->set_throttle_out(0,false,g.throttle_filt);
|
|
#else
|
|
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
|
|
// multicopters do not stabilize roll/pitch/yaw when disarmed
|
|
// reset attitude control targets
|
|
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
|
|
#endif
|
|
// To-Do: re-initialise wpnav targets
|
|
return;
|
|
}
|
|
|
|
// process pilot's yaw input
|
|
float target_yaw_rate = 0;
|
|
if (!failsafe.radio) {
|
|
// get pilot's desired yaw rate
|
|
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
|
|
if (!is_zero(target_yaw_rate)) {
|
|
set_auto_yaw_mode(AUTO_YAW_HOLD);
|
|
}
|
|
}
|
|
|
|
// set motors to full range
|
|
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
|
|
|
|
// run waypoint controller
|
|
failsafe_terrain_set_status(wp_nav->update_wpnav());
|
|
|
|
// call z-axis position controller (wpnav should have already updated it's alt target)
|
|
pos_control->update_z_controller();
|
|
|
|
// call attitude controller
|
|
if (auto_yaw_mode == AUTO_YAW_HOLD) {
|
|
// roll & pitch from waypoint controller, yaw rate from pilot
|
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
|
|
}else{
|
|
// roll, pitch from waypoint controller, yaw heading from auto_heading()
|
|
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true, get_smoothing_gain());
|
|
}
|
|
|
|
// check if we've completed this stage of RTL
|
|
rtl_state_complete = wp_nav->reached_wp_destination();
|
|
}
|
|
|
|
// rtl_loiterathome_start - initialise return to home
|
|
void Copter::rtl_loiterathome_start()
|
|
{
|
|
rtl_state = RTL_LoiterAtHome;
|
|
rtl_state_complete = false;
|
|
rtl_loiter_start_time = millis();
|
|
|
|
// yaw back to initial take-off heading yaw unless pilot has already overridden yaw
|
|
if(get_default_auto_yaw_mode(true) != AUTO_YAW_HOLD) {
|
|
set_auto_yaw_mode(AUTO_YAW_RESETTOARMEDYAW);
|
|
} else {
|
|
set_auto_yaw_mode(AUTO_YAW_HOLD);
|
|
}
|
|
}
|
|
|
|
// rtl_climb_return_descent_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
|
|
// called by rtl_run at 100hz or more
|
|
void Copter::rtl_loiterathome_run()
|
|
{
|
|
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
|
|
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
|
|
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
|
|
// call attitude controller
|
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
|
|
attitude_control->set_throttle_out(0,false,g.throttle_filt);
|
|
#else
|
|
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
|
|
// multicopters do not stabilize roll/pitch/yaw when disarmed
|
|
// reset attitude control targets
|
|
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
|
|
#endif
|
|
// To-Do: re-initialise wpnav targets
|
|
return;
|
|
}
|
|
|
|
// process pilot's yaw input
|
|
float target_yaw_rate = 0;
|
|
if (!failsafe.radio) {
|
|
// get pilot's desired yaw rate
|
|
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
|
|
if (!is_zero(target_yaw_rate)) {
|
|
set_auto_yaw_mode(AUTO_YAW_HOLD);
|
|
}
|
|
}
|
|
|
|
// set motors to full range
|
|
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
|
|
|
|
// run waypoint controller
|
|
failsafe_terrain_set_status(wp_nav->update_wpnav());
|
|
|
|
// call z-axis position controller (wpnav should have already updated it's alt target)
|
|
pos_control->update_z_controller();
|
|
|
|
// call attitude controller
|
|
if (auto_yaw_mode == AUTO_YAW_HOLD) {
|
|
// roll & pitch from waypoint controller, yaw rate from pilot
|
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
|
|
}else{
|
|
// roll, pitch from waypoint controller, yaw heading from auto_heading()
|
|
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true, get_smoothing_gain());
|
|
}
|
|
|
|
// check if we've completed this stage of RTL
|
|
if ((millis() - rtl_loiter_start_time) >= (uint32_t)g.rtl_loiter_time.get()) {
|
|
if (auto_yaw_mode == AUTO_YAW_RESETTOARMEDYAW) {
|
|
// check if heading is within 2 degrees of heading when vehicle was armed
|
|
if (labs(wrap_180_cd(ahrs.yaw_sensor-initial_armed_bearing)) <= 200) {
|
|
rtl_state_complete = true;
|
|
}
|
|
} else {
|
|
// we have loitered long enough
|
|
rtl_state_complete = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// rtl_descent_start - initialise descent to final alt
|
|
void Copter::rtl_descent_start()
|
|
{
|
|
rtl_state = RTL_FinalDescent;
|
|
rtl_state_complete = false;
|
|
|
|
// Set wp navigation target to above home
|
|
wp_nav->init_loiter_target(wp_nav->get_wp_destination());
|
|
|
|
// initialise altitude target to stopping point
|
|
pos_control->set_target_to_stopping_point_z();
|
|
|
|
// initialise yaw
|
|
set_auto_yaw_mode(AUTO_YAW_HOLD);
|
|
}
|
|
|
|
// rtl_descent_run - implements the final descent to the RTL_ALT
|
|
// called by rtl_run at 100hz or more
|
|
void Copter::rtl_descent_run()
|
|
{
|
|
int16_t roll_control = 0, pitch_control = 0;
|
|
float target_yaw_rate = 0;
|
|
|
|
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
|
|
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
|
|
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
|
|
// call attitude controller
|
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
|
|
attitude_control->set_throttle_out(0,false,g.throttle_filt);
|
|
#else
|
|
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
|
|
// multicopters do not stabilize roll/pitch/yaw when disarmed
|
|
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
|
|
#endif
|
|
// set target to current position
|
|
wp_nav->init_loiter_target();
|
|
return;
|
|
}
|
|
|
|
// process pilot's input
|
|
if (!failsafe.radio) {
|
|
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
|
|
Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
|
|
// exit land if throttle is high
|
|
if (!set_mode(LOITER, MODE_REASON_THROTTLE_LAND_ESCAPE)) {
|
|
set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE);
|
|
}
|
|
}
|
|
|
|
if (g.land_repositioning) {
|
|
// apply SIMPLE mode transform to pilot inputs
|
|
update_simple_mode();
|
|
|
|
// process pilot's roll and pitch input
|
|
roll_control = channel_roll->get_control_in();
|
|
pitch_control = channel_pitch->get_control_in();
|
|
}
|
|
|
|
// get pilot's desired yaw rate
|
|
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
|
|
}
|
|
|
|
// set motors to full range
|
|
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
|
|
|
|
// process roll, pitch inputs
|
|
wp_nav->set_pilot_desired_acceleration(roll_control, pitch_control);
|
|
|
|
// run loiter controller
|
|
wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
|
|
|
|
// call z-axis position controller
|
|
pos_control->set_alt_target_with_slew(rtl_path.descent_target.alt, G_Dt);
|
|
pos_control->update_z_controller();
|
|
|
|
// roll & pitch from waypoint controller, yaw rate from pilot
|
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
|
|
|
|
// check if we've reached within 20cm of final altitude
|
|
rtl_state_complete = abs(rtl_path.descent_target.alt - current_loc.alt) < 20;
|
|
}
|
|
|
|
// rtl_loiterathome_start - initialise controllers to loiter over home
|
|
void Copter::rtl_land_start()
|
|
{
|
|
rtl_state = RTL_Land;
|
|
rtl_state_complete = false;
|
|
|
|
// Set wp navigation target to above home
|
|
wp_nav->init_loiter_target(wp_nav->get_wp_destination());
|
|
|
|
// initialise position and desired velocity
|
|
if (!pos_control->is_active_z()) {
|
|
pos_control->set_alt_target_to_current_alt();
|
|
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
|
|
}
|
|
|
|
// initialise yaw
|
|
set_auto_yaw_mode(AUTO_YAW_HOLD);
|
|
}
|
|
|
|
// rtl_returnhome_run - return home
|
|
// called by rtl_run at 100hz or more
|
|
void Copter::rtl_land_run()
|
|
{
|
|
// if not auto armed or landing completed or motor interlock not enabled set throttle to zero and exit immediately
|
|
if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
|
|
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
|
|
// call attitude controller
|
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
|
|
attitude_control->set_throttle_out(0,false,g.throttle_filt);
|
|
#else
|
|
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
|
|
// multicopters do not stabilize roll/pitch/yaw when disarmed
|
|
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
|
|
#endif
|
|
// set target to current position
|
|
wp_nav->init_loiter_target();
|
|
|
|
// disarm when the landing detector says we've landed
|
|
if (ap.land_complete) {
|
|
init_disarm_motors();
|
|
}
|
|
|
|
// check if we've completed this stage of RTL
|
|
rtl_state_complete = ap.land_complete;
|
|
return;
|
|
}
|
|
|
|
// set motors to full range
|
|
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
|
|
|
|
land_run_horizontal_control();
|
|
land_run_vertical_control();
|
|
|
|
// check if we've completed this stage of RTL
|
|
rtl_state_complete = ap.land_complete;
|
|
}
|
|
|
|
void Copter::rtl_build_path(bool terrain_following_allowed)
|
|
{
|
|
// origin point is our stopping point
|
|
Vector3f stopping_point;
|
|
pos_control->get_stopping_point_xy(stopping_point);
|
|
pos_control->get_stopping_point_z(stopping_point);
|
|
rtl_path.origin_point = Location_Class(stopping_point);
|
|
rtl_path.origin_point.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_HOME);
|
|
|
|
// compute return target
|
|
rtl_compute_return_target(terrain_following_allowed);
|
|
|
|
// climb target is above our origin point at the return altitude
|
|
rtl_path.climb_target = Location_Class(rtl_path.origin_point.lat, rtl_path.origin_point.lng, rtl_path.return_target.alt, rtl_path.return_target.get_alt_frame());
|
|
|
|
// descent target is below return target at rtl_alt_final
|
|
rtl_path.descent_target = Location_Class(rtl_path.return_target.lat, rtl_path.return_target.lng, g.rtl_alt_final, Location_Class::ALT_FRAME_ABOVE_HOME);
|
|
|
|
// set land flag
|
|
rtl_path.land = g.rtl_alt_final <= 0;
|
|
}
|
|
|
|
// compute the return target - home or rally point
|
|
// return altitude in cm above home at which vehicle should return home
|
|
// return target's altitude is updated to a higher altitude that the vehicle can safely return at (frame may also be set)
|
|
void Copter::rtl_compute_return_target(bool terrain_following_allowed)
|
|
{
|
|
// set return target to nearest rally point or home position (Note: alt is absolute)
|
|
#if AC_RALLY == ENABLED
|
|
rtl_path.return_target = rally.calc_best_rally_or_home_location(current_loc, ahrs.get_home().alt);
|
|
#else
|
|
rtl_path.return_target = ahrs.get_home();
|
|
#endif
|
|
|
|
// curr_alt is current altitude above home or above terrain depending upon use_terrain
|
|
int32_t curr_alt = current_loc.alt;
|
|
|
|
// decide if we should use terrain altitudes
|
|
rtl_path.terrain_used = terrain_use() && terrain_following_allowed;
|
|
if (rtl_path.terrain_used) {
|
|
// attempt to retrieve terrain alt for current location, stopping point and origin
|
|
int32_t origin_terr_alt, return_target_terr_alt;
|
|
if (!rtl_path.origin_point.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, origin_terr_alt) ||
|
|
!rtl_path.return_target.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, return_target_terr_alt) ||
|
|
!current_loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, curr_alt)) {
|
|
rtl_path.terrain_used = false;
|
|
Log_Write_Error(ERROR_SUBSYSTEM_TERRAIN, ERROR_CODE_MISSING_TERRAIN_DATA);
|
|
}
|
|
}
|
|
|
|
// convert return-target alt (which is an absolute alt) to alt-above-home or alt-above-terrain
|
|
if (!rtl_path.terrain_used || !rtl_path.return_target.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_TERRAIN)) {
|
|
if (!rtl_path.return_target.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_HOME)) {
|
|
// this should never happen but just in case
|
|
rtl_path.return_target.set_alt_cm(0, Location_Class::ALT_FRAME_ABOVE_HOME);
|
|
}
|
|
rtl_path.terrain_used = false;
|
|
}
|
|
|
|
// set new target altitude to return target altitude
|
|
// Note: this is alt-above-home or terrain-alt depending upon use_terrain
|
|
// Note: ignore negative altitudes which could happen if user enters negative altitude for rally point or terrain is higher at rally point compared to home
|
|
int32_t target_alt = MAX(rtl_path.return_target.alt, 0);
|
|
|
|
// increase target to maximum of current altitude + climb_min and rtl altitude
|
|
target_alt = MAX(target_alt, curr_alt + MAX(0, g.rtl_climb_min));
|
|
target_alt = MAX(target_alt, MAX(g.rtl_altitude, RTL_ALT_MIN));
|
|
|
|
// reduce climb if close to return target
|
|
float rtl_return_dist_cm = rtl_path.return_target.get_distance(rtl_path.origin_point) * 100.0f;
|
|
// don't allow really shallow slopes
|
|
if (g.rtl_cone_slope >= RTL_MIN_CONE_SLOPE) {
|
|
target_alt = MAX(curr_alt, MIN(target_alt, MAX(rtl_return_dist_cm*g.rtl_cone_slope, curr_alt+RTL_ABS_MIN_CLIMB)));
|
|
}
|
|
|
|
// set returned target alt to new target_alt
|
|
rtl_path.return_target.set_alt_cm(target_alt, rtl_path.terrain_used ? Location_Class::ALT_FRAME_ABOVE_TERRAIN : Location_Class::ALT_FRAME_ABOVE_HOME);
|
|
|
|
#if AC_FENCE == ENABLED
|
|
// ensure not above fence altitude if alt fence is enabled
|
|
// Note: because the rtl_path.climb_target's altitude is simply copied from the return_target's altitude,
|
|
// if terrain altitudes are being used, the code below which reduces the return_target's altitude can lead to
|
|
// the vehicle not climbing at all as RTL begins. This can be overly conservative and it might be better
|
|
// to apply the fence alt limit independently on the origin_point and return_target
|
|
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
|
|
// get return target as alt-above-home so it can be compared to fence's alt
|
|
if (rtl_path.return_target.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_HOME, target_alt)) {
|
|
float fence_alt = fence.get_safe_alt_max()*100.0f;
|
|
if (target_alt > fence_alt) {
|
|
// reduce target alt to the fence alt
|
|
rtl_path.return_target.alt -= (target_alt - fence_alt);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// ensure we do not descend
|
|
rtl_path.return_target.alt = MAX(rtl_path.return_target.alt, curr_alt);
|
|
}
|