ardupilot/libraries/AP_Common/AP_ExpandingArray.h
2019-06-20 15:09:23 +09:00

116 lines
3.9 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <AP_Common/AP_Common.h>
template <typename T>
class AP_ExpandingArray
{
public:
AP_ExpandingArray<T>() :
chunk_size(50)
{ // create one chunk
expand(1);
}
AP_ExpandingArray<T>(uint16_t num_chunks, uint16_t elements_per_chunk) :
chunk_size(elements_per_chunk)
{ // create requested number of chunks
expand(num_chunks);
}
/* Do not allow copies */
AP_ExpandingArray<T>(const AP_ExpandingArray<T> &other) = delete;
AP_ExpandingArray<T> &operator=(const AP_ExpandingArray<T>&) = delete;
// current maximum number of items (using expand may increase this)
uint16_t max_items() const { return chunk_size * chunk_count; }
// allow use as an array for assigning to elements. no bounds checking is performed
T &operator[](uint16_t i)
{
const uint16_t chunk_num = i / chunk_size;
const uint16_t chunk_index = i % chunk_size;
return chunk_ptrs[chunk_num][chunk_index];
}
// allow use as an array for accessing elements. no bounds checking is performed
const T &operator[](uint16_t i) const
{
const uint16_t chunk_num = i / chunk_size;
const uint16_t chunk_index = i % chunk_size;
return chunk_ptrs[chunk_num][chunk_index];
}
// expand the array by specified number of chunks, returns true on success
bool expand(uint16_t num_chunks = 1)
{
// expand chunk_ptrs array if necessary
if (chunk_count + num_chunks >= chunk_count_max) {
uint16_t chunk_ptr_size = chunk_count + num_chunks + chunk_ptr_increment;
chunk_ptr *chunk_ptrs_new = (chunk_ptr*)calloc(chunk_ptr_size, sizeof(T*));
if (chunk_ptrs_new == nullptr) {
return false;
}
// copy pointers to new points array
memcpy(chunk_ptrs_new, chunk_ptrs, chunk_count_max * sizeof(T*));
// free old pointers array
delete chunk_ptrs;
// use new pointers array
chunk_ptrs = chunk_ptrs_new;
chunk_count_max = chunk_ptr_size;
}
// allocate new chunks
for (uint16_t i = 0; i < num_chunks; i++) {
T *new_chunk = (T *)calloc(chunk_size, sizeof(T));
if (new_chunk == nullptr) {
// failed to allocate new chunk
return false;
}
chunk_ptrs[chunk_count] = new_chunk;
chunk_count++;
}
return true;
}
// expand to hold at least num_items
bool expand_to_hold(uint16_t num_items)
{
// check if already big enough
if (num_items <= max_items()) {
return true;
}
uint16_t chunks_required = ((num_items - max_items()) / chunk_size) + 1;
return expand(chunks_required);
}
private:
// chunk_ptrs array is grown by this many elements each time it fills
const uint16_t chunk_ptr_increment = 50;
typedef T* chunk_ptr;
uint16_t chunk_size; // the number of T elements in each chunk
chunk_ptr* chunk_ptrs; // array of pointers to allocated chunks
uint16_t chunk_count_max; // number of elements in chunk_ptrs array
uint16_t chunk_count; // number of allocated chunks
};