ardupilot/ArduPlane/system.pde

565 lines
15 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// Functions called from the top-level menu
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
static int8_t planner_mode(uint8_t argc, const Menu::arg *argv); // in planner.pde
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Commands:\n"
" logs log readback/setup mode\n"
" setup setup mode\n"
" test test mode\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
static const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"help", main_menu_help},
{"planner", planner_mode}
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
// the user wants the CLI. It never exits
static void run_cli(void)
{
// disable the failsafe code in the CLI
timer_scheduler.set_failsafe(NULL);
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void init_ardupilot()
{
#if USB_MUX_PIN > 0
// on the APM2 board we have a mux thet switches UART0 between
// USB and the board header. If the right ArduPPM firmware is
// installed we can detect if USB is connected using the
// USB_MUX_PIN
pinMode(USB_MUX_PIN, INPUT);
usb_connected = !digitalRead(USB_MUX_PIN);
if (!usb_connected) {
// USB is not connected, this means UART0 may be a Xbee, with
// its darned bricking problem. We can't write to it for at
// least one second after powering up. Simplest solution for
// now is to delay for 1 second. Something more elegant may be
// added later
delay(1000);
}
#endif
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the MAVLink protocol efficiently
//
Serial.begin(SERIAL0_BAUD, 128, 256);
// GPS serial port.
//
// standard gps running
Serial1.begin(38400, 256, 16);
Serial.printf_P(PSTR("\n\nInit " THISFIRMWARE
"\n\nFree RAM: %u\n"),
memcheck_available_memory());
#if QUATERNION_ENABLE == ENABLED
Serial.printf_P(PSTR("Quaternion test\n"));
#endif
//
// Initialize Wire and SPI libraries
//
#ifndef DESKTOP_BUILD
I2c.begin();
I2c.timeOut(5);
// initially set a fast I2c speed, and drop it on first failures
I2c.setSpeed(true);
#endif
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1MHZ SPI rate
//
// Initialize the ISR registry.
//
isr_registry.init();
//
// Initialize the timer scheduler to use the ISR registry.
//
timer_scheduler.init( & isr_registry );
// initialise the analog port reader
AP_AnalogSource_Arduino::init_timer(&timer_scheduler);
//
// Check the EEPROM format version before loading any parameters from EEPROM.
//
load_parameters();
// keep a record of how many resets have happened. This can be
// used to detect in-flight resets
g.num_resets.set_and_save(g.num_resets+1);
// init the GCS
gcs0.init(&Serial);
#if USB_MUX_PIN > 0
if (!usb_connected) {
// we are not connected via USB, re-init UART0 with right
// baud rate
Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
}
#else
// we have a 2nd serial port for telemetry
Serial3.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 256);
gcs3.init(&Serial3);
#endif
mavlink_system.sysid = g.sysid_this_mav;
#if LOGGING_ENABLED == ENABLED
DataFlash.Init(); // DataFlash log initialization
if (!DataFlash.CardInserted()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted"));
g.log_bitmask.set(0);
} else if (DataFlash.NeedErase()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
do_erase_logs();
}
if (g.log_bitmask != 0) {
DataFlash.start_new_log();
}
#endif
#if HIL_MODE != HIL_MODE_ATTITUDE
#if CONFIG_ADC == ENABLED
adc.Init(&timer_scheduler); // APM ADC library initialization
#endif
// initialise the analog port reader
AP_AnalogSource_Arduino::init_timer(&timer_scheduler);
barometer.init(&timer_scheduler);
if (g.compass_enabled==true) {
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft
if (!compass.init() || !compass.read()) {
Serial.println_P(PSTR("Compass initialisation failed!"));
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
}
}
#endif
// give AHRS the airspeed sensor
ahrs.set_airspeed(&airspeed);
// Do GPS init
g_gps = &g_gps_driver;
// GPS Initialization
g_gps->init(GPS::GPS_ENGINE_AIRBORNE_4G);
g_gps->callback = mavlink_delay;
//mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav
mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id
mavlink_system.type = MAV_TYPE_FIXED_WING;
rc_override_active = APM_RC.setHIL(rc_override); // Set initial values for no override
RC_Channel::set_apm_rc( &APM_RC ); // Provide reference to RC outputs.
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
#if CONFIG_RELAY == ENABLED
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay
#endif
#if FENCE_TRIGGERED_PIN > 0
pinMode(FENCE_TRIGGERED_PIN, OUTPUT);
digitalWrite(FENCE_TRIGGERED_PIN, LOW);
#endif
/*
setup the 'main loop is dead' check. Note that this relies on
the RC library being initialised.
*/
timer_scheduler.set_failsafe(failsafe_check);
Serial.printf_P(PSTR("\nPress ENTER 3 times to start interactive setup\n\n"));
if (ENABLE_AIR_START == 1) {
// Perform an air start and get back to flying
gcs_send_text_P(SEVERITY_LOW,PSTR("<init_ardupilot> AIR START"));
// Get necessary data from EEPROM
//----------------
//read_EEPROM_airstart_critical();
#if HIL_MODE != HIL_MODE_ATTITUDE
imu.init(IMU::WARM_START, mavlink_delay, flash_leds, &timer_scheduler);
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
ahrs.set_fly_forward(true);
#endif
// This delay is important for the APM_RC library to work.
// We need some time for the comm between the 328 and 1280 to be established.
int old_pulse = 0;
while (millis()<=1000 && (abs(old_pulse - APM_RC.InputCh(g.flight_mode_channel)) > 5 ||
APM_RC.InputCh(g.flight_mode_channel) == 1000 ||
APM_RC.InputCh(g.flight_mode_channel) == 1200)) {
old_pulse = APM_RC.InputCh(g.flight_mode_channel);
delay(25);
}
GPS_enabled = false;
g_gps->update();
if (g_gps->status() != 0 || HIL_MODE != HIL_MODE_DISABLED) GPS_enabled = true;
if (g.log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_AIRSTART_MSG);
reload_commands_airstart(); // Get set to resume AUTO from where we left off
}else {
startup_ground();
if (g.log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
}
set_mode(MANUAL);
// set the correct flight mode
// ---------------------------
reset_control_switch();
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
static void startup_ground(void)
{
set_mode(INITIALISING);
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START"));
#if(GROUND_START_DELAY > 0)
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay"));
delay(GROUND_START_DELAY * 1000);
#endif
// Makes the servos wiggle
// step 1 = 1 wiggle
// -----------------------
demo_servos(1);
//IMU ground start
//------------------------
//
startup_IMU_ground(false);
// read the radio to set trims
// ---------------------------
trim_radio(); // This was commented out as a HACK. Why? I don't find a problem.
// Save the settings for in-air restart
// ------------------------------------
//save_EEPROM_groundstart();
// initialize commands
// -------------------
init_commands();
// Read in the GPS - see if one is connected
GPS_enabled = false;
for (byte counter = 0; ; counter++) {
g_gps->update();
if (g_gps->status() != 0 || HIL_MODE != HIL_MODE_DISABLED){
GPS_enabled = true;
break;
}
if (counter >= 2) {
GPS_enabled = false;
break;
}
}
// Makes the servos wiggle - 3 times signals ready to fly
// -----------------------
demo_servos(3);
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
Serial.set_blocking_writes(false);
if (gcs3.initialised) {
Serial3.set_blocking_writes(false);
}
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY."));
}
static void set_mode(byte mode)
{
if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
if(g.auto_trim > 0 && control_mode == MANUAL)
trim_control_surfaces();
control_mode = mode;
crash_timer = 0;
switch(control_mode)
{
case INITIALISING:
case MANUAL:
case CIRCLE:
case STABILIZE:
case FLY_BY_WIRE_A:
case FLY_BY_WIRE_B:
break;
case AUTO:
update_auto();
break;
case RTL:
do_RTL();
break;
case LOITER:
do_loiter_at_location();
break;
case GUIDED:
set_guided_WP();
break;
default:
do_RTL();
break;
}
if (g.log_bitmask & MASK_LOG_MODE)
Log_Write_Mode(control_mode);
}
static void check_long_failsafe()
{
// only act on changes
// -------------------
if(failsafe != FAILSAFE_LONG && failsafe != FAILSAFE_GCS){
if(rc_override_active && millis() - rc_override_fs_timer > FAILSAFE_LONG_TIME) {
failsafe_long_on_event(FAILSAFE_LONG);
}
if(! rc_override_active && failsafe == FAILSAFE_SHORT && millis() - ch3_failsafe_timer > FAILSAFE_LONG_TIME) {
failsafe_long_on_event(FAILSAFE_LONG);
}
if(g.gcs_heartbeat_fs_enabled && millis() - rc_override_fs_timer > FAILSAFE_LONG_TIME) {
failsafe_long_on_event(FAILSAFE_GCS);
}
} else {
// We do not change state but allow for user to change mode
if(failsafe == FAILSAFE_GCS && millis() - rc_override_fs_timer < FAILSAFE_SHORT_TIME) failsafe = FAILSAFE_NONE;
if(failsafe == FAILSAFE_LONG && rc_override_active && millis() - rc_override_fs_timer < FAILSAFE_SHORT_TIME) failsafe = FAILSAFE_NONE;
if(failsafe == FAILSAFE_LONG && !rc_override_active && !ch3_failsafe) failsafe = FAILSAFE_NONE;
}
}
static void check_short_failsafe()
{
// only act on changes
// -------------------
if(failsafe == FAILSAFE_NONE){
if(ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde
failsafe_short_on_event(FAILSAFE_SHORT);
}
}
if(failsafe == FAILSAFE_SHORT){
if(!ch3_failsafe) {
failsafe_short_off_event();
}
}
}
static void startup_IMU_ground(bool force_accel_level)
{
#if HIL_MODE != HIL_MODE_ATTITUDE
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC..."));
mavlink_delay(500);
// Makes the servos wiggle twice - about to begin IMU calibration - HOLD LEVEL AND STILL!!
// -----------------------
demo_servos(2);
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning IMU calibration; do not move plane"));
mavlink_delay(1000);
imu.init(IMU::COLD_START, mavlink_delay, flash_leds, &timer_scheduler);
if (force_accel_level || g.manual_level == 0) {
// when MANUAL_LEVEL is set to 1 we don't do accelerometer
// levelling on each boot, and instead rely on the user to do
// it once via the ground station
imu.init_accel(mavlink_delay, flash_leds);
}
ahrs.set_fly_forward(true);
ahrs.reset();
// read Baro pressure at ground
//-----------------------------
init_barometer();
if (airspeed.enabled()) {
// initialize airspeed sensor
// --------------------------
zero_airspeed();
gcs_send_text_P(SEVERITY_LOW,PSTR("zero airspeed calibrated"));
} else {
gcs_send_text_P(SEVERITY_LOW,PSTR("NO airspeed"));
}
#endif // HIL_MODE_ATTITUDE
digitalWrite(B_LED_PIN, LED_ON); // Set LED B high to indicate IMU ready
digitalWrite(A_LED_PIN, LED_OFF);
digitalWrite(C_LED_PIN, LED_OFF);
}
static void update_GPS_light(void)
{
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
// ---------------------------------------------------------------------
switch (g_gps->status()) {
case(2):
digitalWrite(C_LED_PIN, LED_ON); //Turn LED C on when gps has valid fix.
break;
case(1):
if (g_gps->valid_read == true){
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock
if (GPS_light){
digitalWrite(C_LED_PIN, LED_OFF);
} else {
digitalWrite(C_LED_PIN, LED_ON);
}
g_gps->valid_read = false;
}
break;
default:
digitalWrite(C_LED_PIN, LED_OFF);
break;
}
}
static void resetPerfData(void) {
mainLoop_count = 0;
G_Dt_max = 0;
imu.adc_constraints = 0;
ahrs.renorm_range_count = 0;
ahrs.renorm_blowup_count = 0;
gps_fix_count = 0;
pmTest1 = 0;
perf_mon_timer = millis();
}
/*
map from a 8 bit EEPROM baud rate to a real baud rate
*/
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
{
switch (rate) {
case 1: return 1200;
case 2: return 2400;
case 4: return 4800;
case 9: return 9600;
case 19: return 19200;
case 38: return 38400;
case 57: return 57600;
case 111: return 111100;
case 115: return 115200;
}
Serial.println_P(PSTR("Invalid SERIAL3_BAUD"));
return default_baud;
}
#if USB_MUX_PIN > 0
static void check_usb_mux(void)
{
bool usb_check = !digitalRead(USB_MUX_PIN);
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
if (usb_connected) {
Serial.begin(SERIAL0_BAUD);
} else {
Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
}
}
#endif
/*
called by gyro/accel init to flash LEDs so user
has some mesmerising lights to watch while waiting
*/
void flash_leds(bool on)
{
digitalWrite(A_LED_PIN, on?LED_OFF:LED_ON);
digitalWrite(C_LED_PIN, on?LED_ON:LED_OFF);
}
/*
* Read Vcc vs 1.1v internal reference
*/
uint16_t board_voltage(void)
{
static AP_AnalogSource_Arduino vcc(ANALOG_PIN_VCC);
return vcc.read_vcc();
}