ardupilot/ArduCopterMega/system.pde

592 lines
14 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// Functions called from the top-level menu
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
static int8_t planner_mode(uint8_t argc, const Menu::arg *argv); // in planner.pde
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Commands:\n"
" logs\n"
" setup\n"
" test\n"
" planner\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"help", main_menu_help},
{"planner", planner_mode}
};
// Create the top-level menu object.
MENU(main_menu, "AC 2.0.40 Beta", main_menu_commands);
#endif // CLI_ENABLED
static void init_ardupilot()
{
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the console's use as a logging device, optionally as the GPS port when
// GPS_PROTOCOL_IMU is selected, and as the telemetry port.
//
// XXX This could be optimised to reduce the buffer sizes in the cases
// where they are not otherwise required.
//
Serial.begin(SERIAL0_BAUD, 128, 128);
// GPS serial port.
//
// Not used if the IMU/X-Plane GPS is in use.
//
// XXX currently the EM406 (SiRF receiver) is nominally configured
// at 57600, however it's not been supported to date. We should
// probably standardise on 38400.
//
// XXX the 128 byte receive buffer may be too small for NMEA, depending
// on the message set configured.
//
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU
Serial1.begin(38400, 128, 16);
#endif
Serial.printf_P(PSTR("\n\nInit ACM"
"\n\nRAM: %lu\n"),
freeRAM());
//
// Check the EEPROM format version before loading any parameters from EEPROM.
//
report_version();
// setup IO pins
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode
pinMode(PUSHBUTTON_PIN, INPUT); // unused
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay
// XXX set Analog out 14 to output
// 76543210
//DDRK |= B01010000;
#if MOTOR_LEDS == 1
pinMode(FR_LED, OUTPUT); // GPS status LED
pinMode(RE_LED, OUTPUT); // GPS status LED
pinMode(RI_LED, OUTPUT); // GPS status LED
pinMode(LE_LED, OUTPUT); // GPS status LED
#endif
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
//Serial.printf_P(PSTR("\n\nForcing complete parameter reset..."));
/*Serial.printf_P(PSTR("\n\nEEPROM format version %d not compatible with this firmware (requires %d)"
"\n\nForcing complete parameter reset..."),
g.format_version.get(),
Parameters::k_format_version);
*/
// erase all parameters
Serial.printf_P(PSTR("Firmware change: erasing EEPROM...\n"));
delay(100); // wait for serial send
AP_Var::erase_all();
// save the new format version
g.format_version.set_and_save(Parameters::k_format_version);
Serial.printf_P(PSTR("Please Run Setup...\n"));
while (true) {
delay(1000);
if(motor_light){
digitalWrite(A_LED_PIN, HIGH);
digitalWrite(B_LED_PIN, HIGH);
digitalWrite(C_LED_PIN, HIGH);
}else{
digitalWrite(A_LED_PIN, LOW);
digitalWrite(B_LED_PIN, LOW);
digitalWrite(C_LED_PIN, LOW);
}
motor_light = !motor_light;
}
}else{
// Load all auto-loaded EEPROM variables
AP_Var::load_all();
}
// Telemetry port.
//
// Not used if telemetry is going to the console.
//
// XXX for unidirectional protocols, we could (should) minimize
// the receive buffer, and the transmit buffer could also be
// shrunk for protocols that don't send large messages.
//
Serial3.begin(map_baudrate(g.serial3_baud,SERIAL3_BAUD), 128, 128);
#ifdef RADIO_OVERRIDE_DEFAULTS
{
int16_t rc_override[8] = RADIO_OVERRIDE_DEFAULTS;
APM_RC.setHIL(rc_override);
}
#endif
#if FRAME_CONFIG == HELI_FRAME
heli_init_swash(); // heli initialisation
#endif
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
init_camera();
#if HIL_MODE != HIL_MODE_ATTITUDE
adc.Init(); // APM ADC library initialization
barometer.Init(); // APM Abs Pressure sensor initialization
#endif
// Do GPS init
g_gps = &g_gps_driver;
g_gps->init(); // GPS Initialization
g_gps->callback = mavlink_delay;
// init the GCS
#if GCS_PORT == 3
gcs.init(&Serial3);
#else
gcs.init(&Serial);
#endif
// init the HIL
#if HIL_MODE != HIL_MODE_DISABLED
#if HIL_PORT == 3
hil.init(&Serial3);
#elif HIL_PORT == 1
hil.init(&Serial1);
#else
hil.init(&Serial);
#endif
#endif
// We may have a hil object instantiated just for mission planning
#if HIL_MODE == HIL_MODE_DISABLED && HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_PORT == 0
hil.init(&Serial);
#endif
if(g.compass_enabled)
init_compass();
#ifdef OPTFLOW_ENABLED
// init the optical flow sensor
if(g.optflow_enabled) {
init_optflow();
}
#endif
// Logging:
// --------
// DataFlash log initialization
DataFlash.Init();
#if CLI_ENABLED == ENABLED
// If the switch is in 'menu' mode, run the main menu.
//
// Since we can't be sure that the setup or test mode won't leave
// the system in an odd state, we don't let the user exit the top
// menu; they must reset in order to fly.
//
if (check_startup_for_CLI()) {
digitalWrite(A_LED_PIN,HIGH); // turn on setup-mode LED
Serial.printf_P(PSTR("\n"
"Entering interactive setup mode...\n"
"\n"
"Type 'help' to list commands, 'exit' to leave a submenu.\n"
"Visit the 'setup' menu for first-time configuration.\n\n"));
for (;;) {
//Serial.println_P(PSTR("\nMove the slide switch and reset to FLY.\n"));
main_menu.run();
}
}
#endif // CLI_ENABLED
if(g.esc_calibrate == 1){
init_esc();
}
// Logging:
// --------
if(g.log_bitmask != 0){
// TODO - Here we will check on the length of the last log
// We don't want to create a bunch of little logs due to powering on and off
start_new_log();
}
//#if(GROUND_START_DELAY > 0)
//gcs.send_text_P(SEVERITY_LOW, PSTR(" With Delay"));
// delay(GROUND_START_DELAY * 1000);
//#endif
GPS_enabled = false;
// Read in the GPS
for (byte counter = 0; ; counter++) {
g_gps->update();
if (g_gps->status() != 0){
GPS_enabled = true;
break;
}
if (counter >= 2) {
GPS_enabled = false;
break;
}
}
// lengthen the idle timeout for gps Auto_detect
// ---------------------------------------------
g_gps->idleTimeout = 20000;
// print the GPS status
// --------------------
report_gps();
#if HIL_MODE != HIL_MODE_ATTITUDE
// read Baro pressure at ground
//-----------------------------
init_barometer();
#endif
// initialize commands
// -------------------
init_commands();
// set the correct flight mode
// ---------------------------
reset_control_switch();
//delay(100);
startup_ground();
//Serial.printf_P(PSTR("\nloiter: %d\n"), location_error_max);
Log_Write_Startup();
SendDebug("\nReady to FLY ");
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
static void startup_ground(void)
{
gcs.send_text_P(SEVERITY_LOW,PSTR("GROUND START"));
#if HIL_MODE != HIL_MODE_ATTITUDE
// Warm up and read Gyro offsets
// -----------------------------
imu.init_gyro(mavlink_delay);
report_imu();
#endif
// reset the leds
// ---------------------------
clear_leds();
}
/*
#define YAW_HOLD 0
#define YAW_ACRO 1
#define YAW_AUTO 2
#define YAW_LOOK_AT_HOME 3
#define ROLL_PITCH_STABLE 0
#define ROLL_PITCH_ACRO 1
#define ROLL_PITCH_SIMPLE 2
#define ROLL_PITCH_AUTO 3
#define THROTTLE_MANUAL 0
#define THROTTLE_HOLD 1
#define THROTTLE_AUTO 2
*/
static void set_mode(byte mode)
{
if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
old_control_mode = control_mode;
control_mode = mode;
control_mode = constrain(control_mode, 0, NUM_MODES - 1);
// used to stop fly_aways
if(g.rc_3.control_in == 0){ // throttle is 0
// we are on the ground is this is true
// disarm motors for Auto
motor_auto_armed = false;
}
Serial.println(flight_mode_strings[control_mode]);
// report the GPS and Motor arming status
led_mode = NORMAL_LEDS;
// most modes do not calculate crosstrack correction
xtrack_enabled = false;
reset_nav_I();
switch(control_mode)
{
case ACRO:
yaw_mode = YAW_ACRO;
roll_pitch_mode = ROLL_PITCH_ACRO;
throttle_mode = THROTTLE_MANUAL;
reset_hold_I();
break;
case STABILIZE:
yaw_mode = YAW_HOLD;
roll_pitch_mode = ROLL_PITCH_STABLE;
throttle_mode = THROTTLE_MANUAL;
reset_hold_I();
break;
case SIMPLE:
yaw_mode = SIMPLE_YAW;
roll_pitch_mode = SIMPLE_RP;
throttle_mode = SIMPLE_THR;
reset_hold_I();
break;
case ALT_HOLD:
yaw_mode = ALT_HOLD_YAW;
roll_pitch_mode = ALT_HOLD_RP;
throttle_mode = ALT_HOLD_THR;
init_throttle_cruise();
break;
case AUTO:
reset_hold_I();
yaw_mode = AUTO_YAW;
roll_pitch_mode = AUTO_RP;
throttle_mode = AUTO_THR;
init_throttle_cruise();
// loads the commands from where we left off
init_auto();
// do crosstrack correction
xtrack_enabled = true;
break;
case CIRCLE:
yaw_mode = CIRCLE_YAW;
roll_pitch_mode = CIRCLE_RP;
throttle_mode = CIRCLE_THR;
init_throttle_cruise();
next_WP = current_loc;
break;
case LOITER:
yaw_mode = LOITER_YAW;
roll_pitch_mode = LOITER_RP;
throttle_mode = LOITER_THR;
init_throttle_cruise();
next_WP = current_loc;
break;
case GUIDED:
yaw_mode = YAW_AUTO;
roll_pitch_mode = ROLL_PITCH_AUTO;
throttle_mode = THROTTLE_AUTO;
xtrack_enabled = true;
init_throttle_cruise();
next_WP = current_loc;
break;
case RTL:
yaw_mode = RTL_YAW;
roll_pitch_mode = RTL_RP;
throttle_mode = RTL_THR;
xtrack_enabled = true;
init_throttle_cruise();
do_RTL();
break;
default:
break;
}
Log_Write_Mode(control_mode);
// output control mode to the ground station
gcs.send_message(MSG_MODE_CHANGE);
}
static void set_failsafe(boolean mode)
{
// only act on changes
// -------------------
if(failsafe != mode){
// store the value so we don't trip the gate twice
// -----------------------------------------------
failsafe = mode;
if (failsafe == false){
// We've regained radio contact
// ----------------------------
failsafe_off_event();
}else{
// We've lost radio contact
// ------------------------
failsafe_on_event();
}
}
}
static void resetPerfData(void) {
mainLoop_count = 0;
G_Dt_max = 0;
gps_fix_count = 0;
perf_mon_timer = millis();
}
static void
init_compass()
{
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft
dcm.set_compass(&compass);
compass.init();
compass.get_offsets(); // load offsets to account for airframe magnetic interference
}
#ifdef OPTFLOW_ENABLED
static void
init_optflow()
{
optflow.init();
optflow.set_orientation(OPTFLOW_ORIENTATION); // set optical flow sensor's orientation on aircraft
optflow.set_field_of_view(OPTFLOW_FOV); // set optical flow sensor's field of view
}
#endif
/* This function gets the current value of the heap and stack pointers.
* The stack pointer starts at the top of RAM and grows downwards. The heap pointer
* starts just above the static variables etc. and grows upwards. SP should always
* be larger than HP or you'll be in big trouble! The smaller the gap, the more
* careful you need to be. Julian Gall 6 - Feb - 2009.
*/
static unsigned long freeRAM() {
uint8_t * heapptr, * stackptr;
stackptr = (uint8_t *)malloc(4); // use stackptr temporarily
heapptr = stackptr; // save value of heap pointer
free(stackptr); // free up the memory again (sets stackptr to 0)
stackptr = (uint8_t *)(SP); // save value of stack pointer
return stackptr - heapptr;
}
static void
init_simple_bearing()
{
initial_simple_bearing = dcm.yaw_sensor;
}
static void
init_throttle_cruise()
{
// are we moving from manual throttle to auto_throttle?
if((old_control_mode <= SIMPLE) && (g.rc_3.control_in > 150)){
g.pi_throttle.reset_I();
g.throttle_cruise.set_and_save(g.rc_3.control_in);
}
}
#if BROKEN_SLIDER == 1
static boolean
check_startup_for_CLI()
{
//return true;
if((g.rc_4.radio_max) < 1600){
// CLI mode
return true;
}else if(abs(g.rc_4.control_in) > 3000){
// CLI mode
return true;
}else{
// startup to fly
return false;
}
}
#else
static boolean
check_startup_for_CLI()
{
return (digitalRead(SLIDE_SWITCH_PIN) == 0);
}
#endif
/*
map from a 8 bit EEPROM baud rate to a real baud rate
*/
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
{
switch (rate) {
case 9: return 9600;
case 19: return 19200;
case 38: return 38400;
case 57: return 57600;
case 111: return 111100;
case 115: return 115200;
}
Serial.println_P(PSTR("Invalid SERIAL3_BAUD"));
return default_baud;
}