mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 23:28:32 -04:00
50a11c7d5a
this adds some nice control characteristics based on work by Paul and Arthur, but is tilt only
354 lines
13 KiB
C++
354 lines
13 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_Mount_MAVLink.h>
|
|
#if AP_AHRS_NAVEKF_AVAILABLE
|
|
#include <GCS_MAVLink.h>
|
|
|
|
#define MOUNT_DEBUG 0
|
|
#define TILT_CONTROL_ONLY 0
|
|
|
|
#if MOUNT_DEBUG
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
AP_Mount_MAVLink::AP_Mount_MAVLink(AP_Mount &frontend, AP_Mount::mount_state &state, uint8_t instance) :
|
|
AP_Mount_Backend(frontend, state, instance),
|
|
_initialised(false),
|
|
_ekf(frontend._ahrs),
|
|
K_gimbalRate(0.1f),
|
|
angRateLimit(0.5f),
|
|
yawRateFiltPole(10.0f),
|
|
yawErrorLimit(0.1f),
|
|
vehicleYawRateFilt(0)
|
|
{}
|
|
|
|
// init - performs any required initialisation for this instance
|
|
void AP_Mount_MAVLink::init(const AP_SerialManager& serial_manager)
|
|
{
|
|
_initialised = true;
|
|
set_mode((enum MAV_MOUNT_MODE)_state._default_mode.get());
|
|
}
|
|
|
|
// update mount position - should be called periodically
|
|
void AP_Mount_MAVLink::update()
|
|
{
|
|
// exit immediately if not initialised
|
|
if (!_initialised) {
|
|
return;
|
|
}
|
|
|
|
// update based on mount mode
|
|
switch(get_mode()) {
|
|
// move mount to a "retracted" position. we do not implement a separate servo based retract mechanism
|
|
case MAV_MOUNT_MODE_RETRACT:
|
|
break;
|
|
|
|
// move mount to a neutral position, typically pointing forward
|
|
case MAV_MOUNT_MODE_NEUTRAL:
|
|
break;
|
|
|
|
// point to the angles given by a mavlink message
|
|
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
|
|
// do nothing because earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS
|
|
break;
|
|
|
|
// RC radio manual angle control, but with stabilization from the AHRS
|
|
case MAV_MOUNT_MODE_RC_TARGETING:
|
|
// update targets using pilot's rc inputs
|
|
update_targets_from_rc();
|
|
break;
|
|
|
|
// point mount to a GPS point given by the mission planner
|
|
case MAV_MOUNT_MODE_GPS_POINT:
|
|
if(_frontend._ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) {
|
|
calc_angle_to_location(_state._roi_target, _angle_ef_target_rad, true, true);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// we do not know this mode so do nothing
|
|
break;
|
|
}
|
|
}
|
|
|
|
// has_pan_control - returns true if this mount can control it's pan (required for multicopters)
|
|
bool AP_Mount_MAVLink::has_pan_control() const
|
|
{
|
|
// we do not have yaw control
|
|
return false;
|
|
}
|
|
|
|
// set_mode - sets mount's mode
|
|
void AP_Mount_MAVLink::set_mode(enum MAV_MOUNT_MODE mode)
|
|
{
|
|
// exit immediately if not initialised
|
|
if (!_initialised) {
|
|
return;
|
|
}
|
|
|
|
// record the mode change
|
|
_state._mode = mode;
|
|
}
|
|
|
|
// status_msg - called to allow mounts to send their status to GCS using the MOUNT_STATUS message
|
|
void AP_Mount_MAVLink::status_msg(mavlink_channel_t chan)
|
|
{
|
|
// do nothing - we rely on the mount sending the messages directly
|
|
}
|
|
|
|
|
|
/*
|
|
handle a GIMBAL_REPORT message
|
|
*/
|
|
void AP_Mount_MAVLink::handle_gimbal_report(mavlink_channel_t chan, mavlink_message_t *msg)
|
|
{
|
|
// just save it for future processing and reporting to GCS for now
|
|
mavlink_msg_gimbal_report_decode(msg, &_gimbal_report);
|
|
|
|
Vector3f delta_angles(_gimbal_report.delta_angle_x,
|
|
_gimbal_report.delta_angle_y,
|
|
_gimbal_report.delta_angle_z);
|
|
Vector3f delta_velocity(_gimbal_report.delta_velocity_x,
|
|
_gimbal_report.delta_velocity_y,
|
|
_gimbal_report.delta_velocity_z);
|
|
Vector3f joint_angles(_gimbal_report.joint_roll,
|
|
_gimbal_report.joint_pitch,
|
|
_gimbal_report.joint_yaw);
|
|
|
|
_ekf.RunEKF(_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles);
|
|
|
|
/*
|
|
we have two different gimbal control algorithms. One does tilt
|
|
control only, but has better control characteristics. The other
|
|
does roll/tilt/yaw, but has worset control characteristics
|
|
*/
|
|
#if TILT_CONTROL_ONLY
|
|
Vector3f rateDemand = gimbal_update_control2(_angle_ef_target_rad,
|
|
_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles);
|
|
#else
|
|
Vector3f rateDemand = gimbal_update_control1(_angle_ef_target_rad,
|
|
_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles);
|
|
#endif
|
|
|
|
// for now send a zero gyro bias update and incorporate into the
|
|
// demanded rates
|
|
Vector3f gyroBias(0,0,0);
|
|
|
|
// send the gimbal control message
|
|
mavlink_msg_gimbal_control_send(chan,
|
|
msg->sysid,
|
|
msg->compid,
|
|
rateDemand.x, rateDemand.y, rateDemand.z, // demanded rates
|
|
gyroBias.x, gyroBias.y, gyroBias.z);
|
|
}
|
|
|
|
/*
|
|
send a GIMBAL_REPORT message to the GCS
|
|
*/
|
|
void AP_Mount_MAVLink::send_gimbal_report(mavlink_channel_t chan)
|
|
{
|
|
mavlink_msg_gimbal_report_send(chan,
|
|
0, 0, // send as broadcast
|
|
_gimbal_report.delta_time,
|
|
_gimbal_report.delta_angle_x,
|
|
_gimbal_report.delta_angle_y,
|
|
_gimbal_report.delta_angle_z,
|
|
_gimbal_report.delta_velocity_x,
|
|
_gimbal_report.delta_velocity_y,
|
|
_gimbal_report.delta_velocity_z,
|
|
_gimbal_report.joint_roll,
|
|
_gimbal_report.joint_pitch,
|
|
_gimbal_report.joint_yaw);
|
|
float tilt;
|
|
Vector3f velocity, euler, gyroBias;
|
|
_ekf.getDebug(tilt, velocity, euler, gyroBias);
|
|
#if MOUNT_DEBUG
|
|
::printf("tilt=%.2f euler=(%.2f, %.2f, %.2f) vel=(%.2f, %.2f %.2f)\n",
|
|
tilt,
|
|
degrees(euler.x), degrees(euler.y), degrees(euler.z),
|
|
(velocity.x), (velocity.y), (velocity.z));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
calculate demanded rates for the gimbal
|
|
*/
|
|
Vector3f AP_Mount_MAVLink::gimbal_update_control1(const Vector3f &ef_target_euler_rad,
|
|
float delta_time,
|
|
const Vector3f &delta_angles,
|
|
const Vector3f &delta_velocity,
|
|
const Vector3f &joint_angles)
|
|
{
|
|
// get the gyro bias data
|
|
Vector3f gyroBias;
|
|
_ekf.getGyroBias(gyroBias);
|
|
|
|
// get the gimbal estimated quaternion
|
|
Quaternion quatEst;
|
|
_ekf.getQuat(quatEst);
|
|
|
|
// set the demanded quaternion - tilt down with a roll and yaw of zero
|
|
Quaternion quatDem;
|
|
quatDem.from_euler(ef_target_euler_rad.x, ef_target_euler_rad.y, ef_target_euler_rad.z);
|
|
|
|
//divide the demanded quaternion by the estimated to get the error
|
|
Quaternion quatErr = quatDem / quatEst;
|
|
|
|
// convert the quaternion to an angle error vector
|
|
Vector3f deltaAngErr;
|
|
float scaler = 1.0f-quatErr[0]*quatErr[0];
|
|
if (scaler > 1e-12) {
|
|
scaler = 1.0f/sqrtf(scaler);
|
|
deltaAngErr.x = quatErr[1] * scaler;
|
|
deltaAngErr.y = quatErr[2] * scaler;
|
|
deltaAngErr.z = quatErr[3] * scaler;
|
|
} else {
|
|
deltaAngErr.zero();
|
|
}
|
|
|
|
// multiply the angle error vector by a gain to calculate a demanded gimbal rate
|
|
Vector3f rateDemand = deltaAngErr * 1.0f;
|
|
|
|
// Constrain the demanded rate to a length of 0.5 rad /sec
|
|
float length = rateDemand.length();
|
|
if (length > 0.5f) {
|
|
rateDemand = rateDemand * (0.5f / length);
|
|
}
|
|
|
|
return rateDemand;
|
|
}
|
|
|
|
|
|
// convert the quaternion to rotation vector
|
|
Vector3f AP_Mount_MAVLink::quaternion_to_vector(const Quaternion &quat)
|
|
{
|
|
Vector3f vector;
|
|
float scaler = 1.0f-quat[0]*quat[0];
|
|
if (scaler > 1e-12f) {
|
|
scaler = 1.0f/sqrtf(scaler);
|
|
if (quat[0] < 0.0f) {
|
|
scaler *= -1.0f;
|
|
}
|
|
vector.x = quat[1] * scaler;
|
|
vector.y = quat[2] * scaler;
|
|
vector.z = quat[3] * scaler;
|
|
} else {
|
|
vector.zero();
|
|
}
|
|
return vector;
|
|
}
|
|
|
|
// Define rotation matrix using a 312 rotation sequence vector
|
|
Matrix3f AP_Mount_MAVLink::vector312_to_rotation_matrix(const Vector3f &vector)
|
|
{
|
|
Matrix3f matrix;
|
|
float cosPhi = cosf(vector.x);
|
|
float cosTheta = cosf(vector.y);
|
|
float sinPhi = sinf(vector.x);
|
|
float sinTheta = sinf(vector.y);
|
|
float sinPsi = sinf(vector.z);
|
|
float cosPsi = cosf(vector.z);
|
|
matrix[0][0] = cosTheta*cosPsi-sinPsi*sinPhi*sinTheta;
|
|
matrix[1][0] = -sinPsi*cosPhi;
|
|
matrix[2][0] = cosPsi*sinTheta+cosTheta*sinPsi*sinPhi;
|
|
matrix[0][1] = cosTheta*sinPsi+cosPsi*sinPhi*sinTheta;
|
|
matrix[1][1] = cosPsi*cosPhi;
|
|
matrix[2][1] = sinPsi*sinTheta-cosTheta*cosPsi*sinPhi;
|
|
matrix[0][2] = -sinTheta*cosPhi;
|
|
matrix[1][2] = sinPhi;
|
|
matrix[2][2] = cosTheta*cosPhi;
|
|
return matrix;
|
|
}
|
|
|
|
|
|
/*
|
|
calculate the demanded rates for the mount, running the controller
|
|
*/
|
|
Vector3f AP_Mount_MAVLink::gimbal_update_control2(const Vector3f &ef_target_euler_rad,
|
|
float delta_time,
|
|
const Vector3f &delta_angles,
|
|
const Vector3f &delta_velocity,
|
|
const Vector3f &joint_angles)
|
|
{
|
|
// get the gimbal quaternion estimate
|
|
Quaternion quatEst;
|
|
_ekf.getQuat(quatEst);
|
|
|
|
// Add the control rate vectors
|
|
Vector3f gimbalRateDemVec =
|
|
getGimbalRateDemVecYaw(ef_target_euler_rad, delta_time, quatEst, joint_angles) +
|
|
getGimbalRateDemVecTilt(ef_target_euler_rad, quatEst) +
|
|
getGimbalRateDemVecForward(ef_target_euler_rad, delta_time, quatEst);
|
|
|
|
Vector3f gyroBias;
|
|
_ekf.getGyroBias(gyroBias);
|
|
|
|
gimbalRateDemVec += gyroBias;
|
|
return gimbalRateDemVec;
|
|
}
|
|
|
|
Vector3f AP_Mount_MAVLink::getGimbalRateDemVecYaw(const Vector3f &ef_target_euler_rad, float delta_time, const Quaternion &quatEst, const Vector3f &joint_angles)
|
|
{
|
|
// Define rotation from vehicle to gimbal using a 312 rotation sequence
|
|
Matrix3f Tvg = vector312_to_rotation_matrix(joint_angles);
|
|
|
|
// multiply the yaw joint angle by a gain to calculate a
|
|
// demanded vehicle frame relative rate vector required to
|
|
// keep the yaw joint centred
|
|
Vector3f gimbalRateDemVecYaw(0, 0, - K_gimbalRate * joint_angles.z);
|
|
|
|
// Get filtered vehicle turn rate in earth frame
|
|
vehicleYawRateFilt = (1.0f - yawRateFiltPole * delta_time) * vehicleYawRateFilt + yawRateFiltPole * delta_time * _frontend._ahrs.get_yaw_rate_earth();
|
|
Vector3f vehicle_rate_ef(0,0,vehicleYawRateFilt);
|
|
|
|
// calculate the maximum steady state rate error corresponding to the maximum permitted yaw angle error
|
|
float maxRate = K_gimbalRate * yawErrorLimit;
|
|
float vehicle_rate_mag_ef = vehicle_rate_ef.length();
|
|
float excess_rate_correction = fabs(vehicle_rate_mag_ef) - maxRate;
|
|
if (vehicle_rate_mag_ef > maxRate) {
|
|
if (vehicle_rate_ef.z>0.0f) {
|
|
gimbalRateDemVecYaw += _frontend._ahrs.get_dcm_matrix().transposed()*Vector3f(0,0,excess_rate_correction);
|
|
} else {
|
|
gimbalRateDemVecYaw -= _frontend._ahrs.get_dcm_matrix().transposed()*Vector3f(0,0,excess_rate_correction);
|
|
}
|
|
}
|
|
|
|
// rotate into gimbal frame to calculate the gimbal rate vector required to keep the yaw gimbal centred
|
|
gimbalRateDemVecYaw = Tvg * gimbalRateDemVecYaw;
|
|
return gimbalRateDemVecYaw;
|
|
}
|
|
|
|
Vector3f AP_Mount_MAVLink::getGimbalRateDemVecTilt(const Vector3f &ef_target_euler_rad, const Quaternion &quatEst)
|
|
{
|
|
// Calculate the gimbal 321 Euler angle estimates relative to earth frame
|
|
Vector3f eulerEst;
|
|
quatEst.to_euler(eulerEst.x, eulerEst.y, eulerEst.z);
|
|
|
|
// Calculate a demanded quaternion using the demanded roll and pitch and estimated yaw (yaw is slaved to the vehicle)
|
|
Quaternion quatDem;
|
|
//TODO receive target from AP_Mount
|
|
quatDem.from_euler(0, ef_target_euler_rad.y, eulerEst.z);
|
|
|
|
//divide the demanded quaternion by the estimated to get the error
|
|
Quaternion quatErr = quatDem / quatEst;
|
|
|
|
// multiply the angle error vector by a gain to calculate a demanded gimbal rate required to control tilt
|
|
Vector3f gimbalRateDemVecTilt = quaternion_to_vector(quatErr) * K_gimbalRate;
|
|
return gimbalRateDemVecTilt;
|
|
}
|
|
|
|
Vector3f AP_Mount_MAVLink::getGimbalRateDemVecForward(const Vector3f &ef_target_euler_rad, float delta_time, const Quaternion &quatEst)
|
|
{
|
|
// calculate the delta rotation from the last to the current demand where the demand does not incorporate the copters yaw rotation
|
|
Quaternion quatDemForward;
|
|
quatDemForward.from_euler(0, ef_target_euler_rad.y, 0);
|
|
Quaternion deltaQuat = quatDemForward / lastQuatDem;
|
|
lastQuatDem = quatDemForward;
|
|
|
|
// convert to a rotation vector and divide by delta time to obtain a forward path rate demand
|
|
Vector3f gimbalRateDemVecForward = quaternion_to_vector(deltaQuat) * (1.0f / delta_time);
|
|
return gimbalRateDemVecForward;
|
|
}
|
|
|
|
#endif // AP_AHRS_NAVEKF_AVAILABLE
|