ardupilot/libraries/AP_FETtecOneWire/AP_FETtecOneWire.cpp

876 lines
30 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Initial protocol implementation was provided by FETtec */
/* Strongly modified by Amilcar Lucas, IAV GmbH */
#include <AP_Math/AP_Math.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <SRV_Channel/SRV_Channel.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Math/AP_Math.h>
#include "AP_FETtecOneWire.h"
#if HAL_AP_FETTEC_ONEWIRE_ENABLED
extern const AP_HAL::HAL& hal;
// Set to 0 when no ESC hardware is available and you want to test the UART send function
#ifndef HAL_AP_FETTEC_CONFIGURE_ESCS
#define HAL_AP_FETTEC_CONFIGURE_ESCS 1
#endif
#if HAL_AP_FETTEC_HALF_DUPLEX
static constexpr uint32_t HALF_DUPLEX_BAUDRATE = 2000000;
#endif
static constexpr uint32_t FULL_DUPLEX_BAUDRATE = 500000;
const AP_Param::GroupInfo AP_FETtecOneWire::var_info[] {
// @Param: MASK
// @DisplayName: Servo channel output bitmask
// @Description: Servo channel mask specifying FETtec ESC output.
// @Bitmask: 0:SERVO1,1:SERVO2,2:SERVO3,3:SERVO4,4:SERVO5,5:SERVO6,6:SERVO7,7:SERVO8,8:SERVO9,9:SERVO10,10:SERVO11,11:SERVO12
// @RebootRequired: True
// @User: Standard
AP_GROUPINFO_FLAGS("MASK", 1, AP_FETtecOneWire, _motor_mask_parameter, 0, AP_PARAM_FLAG_ENABLE),
// @Param: RVMASK
// @DisplayName: Servo channel reverse rotation bitmask
// @Description: Servo channel mask to reverse rotation of FETtec ESC outputs.
// @Bitmask: 0:SERVO1,1:SERVO2,2:SERVO3,3:SERVO4,4:SERVO5,5:SERVO6,6:SERVO7,7:SERVO8,8:SERVO9,9:SERVO10,10:SERVO11,11:SERVO12
// @User: Standard
AP_GROUPINFO("RVMASK", 2, AP_FETtecOneWire, _reverse_mask_parameter, 0),
#if HAL_WITH_ESC_TELEM
// @Param: POLES
// @DisplayName: Nr. electrical poles
// @Description: Number of motor electrical poles
// @Range: 2 50
// @RebootRequired: False
// @User: Standard
AP_GROUPINFO("POLES", 3, AP_FETtecOneWire, _pole_count_parameter, 14),
#endif
AP_GROUPEND
};
AP_FETtecOneWire *AP_FETtecOneWire::_singleton;
AP_FETtecOneWire::AP_FETtecOneWire()
{
AP_Param::setup_object_defaults(this, var_info);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (_singleton != nullptr) {
AP_HAL::panic("AP_FETtecOneWire must be singleton");
}
#endif
_singleton = this;
}
/**
initialize the serial port
*/
void AP_FETtecOneWire::init_uart()
{
if (_uart != nullptr) {
return;
}
const AP_SerialManager& serial_manager = AP::serialmanager();
_uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_FETtecOneWire, 0);
if (_uart == nullptr) {
return; // no serial port available, so nothing to do here
}
_uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
_uart->set_unbuffered_writes(true);
_uart->set_blocking_writes(false);
uint32_t uart_baud { FULL_DUPLEX_BAUDRATE };
#if HAL_AP_FETTEC_HALF_DUPLEX
if (_uart->get_options() & _uart->OPTION_HDPLEX) { //Half-Duplex is enabled
_use_hdplex = true;
uart_baud = HALF_DUPLEX_BAUDRATE;
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "FTW using Half-Duplex");
} else {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "FTW using Full-Duplex");
}
#endif
_uart->begin(uart_baud);
}
/// initialize the device driver: configure serial port, wake-up and configure ESCs
void AP_FETtecOneWire::init()
{
init_uart();
if (_uart == nullptr) {
return; // no serial port available, so nothing to do here
}
_motor_mask = _motor_mask_parameter; // take a copy that will not change after we leave this function
_esc_count = __builtin_popcount(_motor_mask);
#if HAL_WITH_ESC_TELEM
// OneWire supports at most 15 ESCs, because of the 4 bit limitation
// on the fast-throttle command. But we are still limited to the
// number of ESCs the telem library will collect data for.
if (_esc_count == 0 || _motor_mask >= (1 << MIN(15, ESC_TELEM_MAX_ESCS))) {
#else
if (_esc_count == 0 || _motor_mask >= (1 << NUM_SERVO_CHANNELS)) {
#endif
_invalid_mask = true;
return;
}
// we have a uart and the desired ESC combination id valid, allocate some memory:
_escs = new ESC[_esc_count];
if (_escs == nullptr) {
return;
}
// initialise ESC ids. This enforces that the FETtec ESC ids
// inside FETtec ESCs need to be contiguous and start at ID 1
// which required by fast-throttle commands.
uint8_t esc_offset = 0; // offset into our device-driver dynamically-allocated array of ESCs
uint8_t esc_id = 1; // ESC ids inside FETtec protocol are one-indexed
uint8_t servo_chan_offset = 0; // offset into _motor_mask_parameter array
for (uint32_t mask = _motor_mask; mask != 0; mask >>= 1, servo_chan_offset++) {
if (mask & 0x1) {
_escs[esc_offset].servo_ofs = servo_chan_offset;
_escs[esc_offset].id = esc_id++;
esc_offset++;
}
}
_invalid_mask = false; // mask is good
gcs().send_text(MAV_SEVERITY_INFO, "FETtec: allocated %u motors", _esc_count);
// We expect to be able to send a fast-throttle command in each loop.
// 8 bits - OneWire Header
// 4 bits - telemetry request
// 11 bits - throttle value per ESC
// 8 bits - frame CRC
const uint16_t net_bit_count = 8 + 4 + (_esc_count * 11) + 8;
// 7 dummy for rounding up the division by 8
const uint16_t fast_throttle_byte_count = (net_bit_count + 7)/8;
uint16_t telemetry_byte_count { 0U };
#if HAL_WITH_ESC_TELEM
// Telemetry is fetched from each loop in turn.
telemetry_byte_count = sizeof(u.packed_tlm) + 1; // assume 9 pause bits between TX and RX
_fast_throttle_byte_count = fast_throttle_byte_count;
#endif
uint32_t uart_baud { FULL_DUPLEX_BAUDRATE };
#if HAL_AP_FETTEC_HALF_DUPLEX
if (_use_hdplex == true) { //Half-Duplex is enabled
uart_baud = HALF_DUPLEX_BAUDRATE;
}
#endif
_min_fast_throttle_period_us = (fast_throttle_byte_count + telemetry_byte_count) * 9 * 1000000 / uart_baud + 300; // 300us extra reserve
// tell SRV_Channels about ESC capabilities
// this is a bit soonish because we have not seen the ESCs on the bus yet,
// but saves us having to use a state variable to ensure doing this latter just once
SRV_Channels::set_digital_outputs(_motor_mask, 0);
_init_done = true;
}
/**
transmits data to ESCs
@param bytes bytes to transmit
@param length number of bytes to transmit
@return false there's no space in the UART for this message
*/
bool AP_FETtecOneWire::transmit(const uint8_t* bytes, const uint8_t length)
{
const uint32_t now = AP_HAL::micros();
if (now - _last_transmit_us < _min_fast_throttle_period_us) {
// in case the SRV_Channels::push() is running at very high rates, limit the period
// this function gets executed because FETtec needs a time gap between frames
// this also prevents one loop to do multiple actions, like reinitialize an ESC and sending a fast-throttle command without a gap.
_period_too_short++;
return false;
}
_last_transmit_us = now;
if (length > _uart->txspace()) {
return false;
}
_uart->write(bytes, length);
#if HAL_AP_FETTEC_HALF_DUPLEX
if (_use_hdplex) {
_ignore_own_bytes += length;
}
#endif
return true;
}
/**
transmits a config request to ESCs
@param bytes bytes to transmit
@param length number of bytes to transmit
@return false if vehicle is armed or if transmit(bytes, length) would return false
*/
bool AP_FETtecOneWire::transmit_config_request(const uint8_t* bytes, const uint8_t length)
{
if (hal.util->get_soft_armed()) {
return false;
}
return transmit(bytes, length);
}
/// shifts data to start of buffer based on magic header bytes
void AP_FETtecOneWire::move_frame_source_in_receive_buffer(const uint8_t search_start_pos)
{
uint8_t i;
for (i=search_start_pos; i<_receive_buf_used; i++) {
// FIXME: full-duplex should add MASTER here as we see our own data
if ((FrameSource)u.receive_buf[i] == FrameSource::BOOTLOADER ||
(FrameSource)u.receive_buf[i] == FrameSource::ESC) {
break;
}
}
consume_bytes(i);
}
/// cut n bytes from start of buffer
void AP_FETtecOneWire::consume_bytes(const uint8_t n)
{
if (n == 0) {
return;
}
// assure the length of the memmove is positive
if (_receive_buf_used < n) {
return;
}
memmove(u.receive_buf, &u.receive_buf[n], _receive_buf_used-n);
_receive_buf_used = _receive_buf_used - n;
}
/// returns true if the first message in the buffer is OK
bool AP_FETtecOneWire::buffer_contains_ok(const uint8_t length)
{
if (length != sizeof(u.packed_ok)) {
_message_invalid_in_state_count++;
return false;
}
if ((MsgType)u.packed_ok.msg.msgid != MsgType::OK) {
return false;
}
return true;
}
void AP_FETtecOneWire::handle_message(ESC &esc, const uint8_t length)
{
// only accept messages from the bootloader when we could
// legitimately get a message from the bootloader. Swipes the OK
// message for convenience
const FrameSource frame_source = (FrameSource)u.packed_ok.frame_source;
if (frame_source != FrameSource::ESC) {
if (esc.state != ESCState::WAITING_OK_FOR_RUNNING_SW_TYPE) {
return;
}
}
switch (esc.state) {
case ESCState::UNINITIALISED:
case ESCState::WANT_SEND_OK_TO_GET_RUNNING_SW_TYPE:
return;
case ESCState::WAITING_OK_FOR_RUNNING_SW_TYPE:
// "OK" is the only valid response
if (!buffer_contains_ok(length)) {
return;
}
switch (frame_source) {
case FrameSource::MASTER:
// probably half-duplex; should be caught before we get here
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
case FrameSource::BOOTLOADER:
esc.set_state(ESCState::WANT_SEND_START_FW);
esc.is_awake = true;
break;
case FrameSource::ESC:
#if HAL_AP_FETTEC_ONEWIRE_GET_STATIC_INFO
esc.set_state(ESCState::WANT_SEND_REQ_TYPE);
#else
#if HAL_WITH_ESC_TELEM
esc.set_state(ESCState::WANT_SEND_SET_TLM_TYPE);
#else
esc.set_state(ESCState::WANT_SEND_SET_FAST_COM_LENGTH);
#endif
#endif // HAL_AP_FETTEC_ONEWIRE_GET_STATIC_INFO
esc.is_awake = true;
break;
}
break;
case ESCState::WANT_SEND_START_FW:
return;
case ESCState::WAITING_OK_FOR_START_FW:
if (buffer_contains_ok(length)) {
#if HAL_AP_FETTEC_ONEWIRE_GET_STATIC_INFO
esc.set_state(ESCState::WANT_SEND_REQ_TYPE);
#else
#if HAL_WITH_ESC_TELEM
esc.set_state(ESCState::WANT_SEND_SET_TLM_TYPE);
#else
esc.set_state(ESCState::WANT_SEND_SET_FAST_COM_LENGTH);
#endif
#endif // HAL_AP_FETTEC_ONEWIRE_GET_STATIC_INFO
}
break;
#if HAL_AP_FETTEC_ONEWIRE_GET_STATIC_INFO
case ESCState::WANT_SEND_REQ_TYPE:
return;
case ESCState::WAITING_ESC_TYPE:
if (length != sizeof(u.packed_esc_type)) {
_message_invalid_in_state_count++;
return;
}
esc.type = u.packed_esc_type.msg.type;
esc.set_state(ESCState::WANT_SEND_REQ_SW_VER);
break;
case ESCState::WANT_SEND_REQ_SW_VER:
return;
case ESCState::WAITING_SW_VER:
if (length != sizeof(u.packed_sw_ver)) {
_message_invalid_in_state_count++;
return;
}
esc.firmware_version = u.packed_sw_ver.msg.version;
esc.firmware_subversion = u.packed_sw_ver.msg.subversion;
esc.set_state(ESCState::WANT_SEND_REQ_SN);
break;
case ESCState::WANT_SEND_REQ_SN:
return;
case ESCState::WAITING_SN:
if (length != sizeof(u.packed_sn)) {
_message_invalid_in_state_count++;
return;
}
static_assert(ARRAY_SIZE(u.packed_sn.msg.sn) == ARRAY_SIZE(esc.serial_number), "Serial number array length missmatch");
memcpy(esc.serial_number, u.packed_sn.msg.sn, ARRAY_SIZE(u.packed_sn.msg.sn));
#if HAL_WITH_ESC_TELEM
esc.set_state(ESCState::WANT_SEND_SET_TLM_TYPE);
#else
esc.set_state(ESCState::WANT_SEND_SET_FAST_COM_LENGTH);
#endif
break;
#endif // HAL_AP_FETTEC_ONEWIRE_GET_STATIC_INFO
#if HAL_WITH_ESC_TELEM
case ESCState::WANT_SEND_SET_TLM_TYPE:
return;
case ESCState::WAITING_SET_TLM_TYPE_OK:
if (buffer_contains_ok(length)) {
esc.set_state(ESCState::WANT_SEND_SET_FAST_COM_LENGTH);
}
break;
#endif
case ESCState::WANT_SEND_SET_FAST_COM_LENGTH:
return;
case ESCState::WAITING_SET_FAST_COM_LENGTH_OK:
if (buffer_contains_ok(length)) {
esc.set_state(ESCState::RUNNING);
}
break;
case ESCState::RUNNING:
// we only expect telemetry messages in this state
#if HAL_WITH_ESC_TELEM
if (!esc.telem_expected) {
// esc.unexpected_telem++;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("unexpected telemetry");
#endif
return;
}
esc.telem_expected = false;
return handle_message_telem(esc);
#else
return;
#endif // HAL_WITH_ESC_TELEM
}
}
#if HAL_WITH_ESC_TELEM
void AP_FETtecOneWire::handle_message_telem(ESC &esc)
{
// the following two methods are coming from AP_ESC_Telem:
const TLM &tlm = u.packed_tlm.msg;
// update rpm and error rate
float error_rate_pct = 0;
if (_fast_throttle_cmd_count) {
error_rate_pct = (tlm.tx_err_count-esc.error_count_at_throttle_count_overflow)*(float)100/(float)_fast_throttle_cmd_count;
} else {
esc.error_count_at_throttle_count_overflow = tlm.tx_err_count;
}
update_rpm(esc.servo_ofs,
tlm.rpm*(100*2/_pole_count_parameter),
error_rate_pct);
// update power and temperature telem data
TelemetryData t {};
t.temperature_cdeg = tlm.temp * 100;
t.voltage = tlm.voltage * 0.01f;
t.current = tlm.current * 0.01f;
t.consumption_mah = tlm.consumption_mah;
update_telem_data(
esc.servo_ofs,
t,
TelemetryType::TEMPERATURE|
TelemetryType::VOLTAGE|
TelemetryType::CURRENT|
TelemetryType::CONSUMPTION);
esc.last_telem_us = AP_HAL::micros();
}
#endif // HAL_WITH_ESC_TELEM
// reads data from the UART, calling handle_message on any message found
void AP_FETtecOneWire::read_data_from_uart()
{
/*
a frame looks like:
byte 1 = frame header (0x02 = bootloader, 0x03 = ESC firmware)
byte 2 = sender ID (5bit)
byte 3 & 4 = frame type (always 0x00, 0x00 used for bootloader. here just for compatibility)
byte 5 = frame length over all bytes
byte 6 - X = answer type, followed by the payload
byte X+1 = 8bit CRC
*/
#if HAL_AP_FETTEC_HALF_DUPLEX
//ignore own bytes
if (_use_hdplex) {
while (_ignore_own_bytes > 0 && _uart->available()) {
_ignore_own_bytes--;
_uart->read();
}
}
#endif
uint32_t bytes_to_read = MIN(_uart->available(), 128U);
uint32_t last_bytes_to_read = 0;
while (bytes_to_read &&
bytes_to_read != last_bytes_to_read) {
last_bytes_to_read = bytes_to_read;
// read as much from the uart as we can:
const uint8_t space = ARRAY_SIZE(u.receive_buf) - _receive_buf_used;
const uint32_t nbytes = _uart->read(&u.receive_buf[_receive_buf_used], space);
_receive_buf_used += nbytes;
bytes_to_read -= nbytes;
move_frame_source_in_receive_buffer();
// borrow the "OK" message to retrieve the frame length from the buffer:
const uint8_t frame_length = u.packed_ok.frame_length;
if (_receive_buf_used < frame_length) {
continue;
}
if (crc8_dvb_update(0, u.receive_buf, frame_length-1) != u.receive_buf[frame_length-1]) {
// bad message; shift away this frame_source byte to try to find
// another message
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("bad message");
#endif
move_frame_source_in_receive_buffer(1);
continue;
}
// borrow the "OK" message to retrieve the frame_source from the buffer:
const FrameSource frame_source = (FrameSource)u.packed_ok.frame_source;
if (frame_source == FrameSource::MASTER) {
// this is our own message - we'd best we running in
// half-duplex or we're in trouble!
consume_bytes(frame_length);
continue;
}
// borrow the "OK" message to retrieve the esc id from the buffer:
const uint8_t esc_id = u.packed_ok.esc_id;
bool handled = false;
// FIXME: we could scribble down the last ESC we sent a
// message to here and use it rather than doing this linear
// search:
for (uint8_t i=0; i<_esc_count; i++) {
auto &esc = _escs[i];
if (esc.id != esc_id) {
continue;
}
handle_message(esc, frame_length);
handled = true;
break;
}
if (!handled) {
_unknown_esc_message++;
}
consume_bytes(frame_length);
}
}
/**
packs a single fast-throttle command frame containing the throttle for all configured OneWire ESCs.
@param motor_values a 16bit array containing the throttle values that should be sent to the motors. 0-2000 where 1001-2000 is positive rotation and 0-999 reversed rotation
@param esc_id_to_request_telem_from the ESC to request telemetry from
*/
void AP_FETtecOneWire::pack_fast_throttle_command(const uint16_t *motor_values, uint8_t *fast_throttle_command, const uint8_t length, const uint8_t esc_id_to_request_telem_from)
{
// byte 1:
// bit 0,1,2,3 = ESC ID, Bit 4 = MSB bit of first ESC (11bit) throttle value, bit 5,6,7 = frame header
// so AAAABCCC
// A = ID from the ESC telemetry is requested from. ESC ID == 0 means no request.
// B = MSB from first throttle value
// C = frame header
fast_throttle_command[0] = esc_id_to_request_telem_from << 4; // 0 here means no telemetry request
fast_throttle_command[0] |= ((motor_values[0] >> 10) & 0x01) << 3;
fast_throttle_command[0] |= (uint8_t)FrameSource::MASTER;
// byte 2:
// AAABBBBB
// A = next 3 bits from (11bit) throttle value
// B = 5bit target ID
fast_throttle_command[1] = (((motor_values[0] >> 7) & 0x07)) << 5;
fast_throttle_command[1] |= 0x1F; // All IDs
// following bytes are the rest 7 bit of the first (11bit) throttle value,
// and all bits from all other throttle values, followed by the CRC byte
uint8_t mot = 0;
uint8_t bits_remaining_in_this_pwm = 7;
for (uint8_t out_byte_offset = 2; out_byte_offset<length; out_byte_offset++) {
if (bits_remaining_in_this_pwm >= 8) {
// const uint8_t mask = 0xFF << (11-bits_remaining_in_this_pwm);
fast_throttle_command[out_byte_offset] = (motor_values[mot] >> (bits_remaining_in_this_pwm-8)) & 0xFF;
bits_remaining_in_this_pwm -= 8;
} else {
const uint8_t mask = (1U<<bits_remaining_in_this_pwm)-1;
const uint8_t bits_to_copy_from_second_pwm = 8-bits_remaining_in_this_pwm;
fast_throttle_command[out_byte_offset] = (motor_values[mot] & mask) << bits_to_copy_from_second_pwm;
// move on to the next motor output
mot++;
if (mot < _esc_count) {
fast_throttle_command[out_byte_offset] |= motor_values[mot] >> (11-bits_to_copy_from_second_pwm);
}
bits_remaining_in_this_pwm = 11 - bits_to_copy_from_second_pwm;
}
}
fast_throttle_command[length-1] =
crc8_dvb_update(0, fast_throttle_command, length-1);
}
void AP_FETtecOneWire::escs_set_values(const uint16_t* motor_values)
{
uint8_t esc_id_to_request_telem_from = 0;
#if HAL_WITH_ESC_TELEM
ESC &esc_to_req_telem_from = _escs[_esc_ofs_to_request_telem_from++];
if (_esc_ofs_to_request_telem_from >= _esc_count) {
_esc_ofs_to_request_telem_from = 0;
}
esc_to_req_telem_from.telem_expected = true;
esc_id_to_request_telem_from = esc_to_req_telem_from.id;
_fast_throttle_cmd_count++;
#endif
uint8_t fast_throttle_command[_fast_throttle_byte_count];
pack_fast_throttle_command(motor_values, fast_throttle_command, sizeof(fast_throttle_command), esc_id_to_request_telem_from);
#if HAL_AP_FETTEC_HALF_DUPLEX
// last byte of signal can be used to make sure the first TLM byte is correct, in case of spike corruption
// FIXME: use this somehow
_last_crc = fast_throttle_command[_fast_throttle_byte_count - 1];
#endif
// No command was yet sent, so no reply is expected and all information
// on the receive buffer is either garbage or noise. Discard it
_uart->discard_input();
// send throttle commands to all configured ESCs in a single packet transfer
transmit(fast_throttle_command, sizeof(fast_throttle_command));
}
bool AP_FETtecOneWire::pre_arm_check(char *failure_msg, const uint8_t failure_msg_len) const
{
if (_motor_mask_parameter == 0) {
return true; // No FETtec ESCs are expected, no need to run further pre-arm checks
}
if (_uart == nullptr) {
hal.util->snprintf(failure_msg, failure_msg_len, "No uart");
return false;
}
if (_invalid_mask) {
hal.util->snprintf(failure_msg, failure_msg_len, "Invalid motor mask");
return false;
}
#if HAL_WITH_ESC_TELEM
if (_pole_count_parameter < 2) {
hal.util->snprintf(failure_msg, failure_msg_len, "Invalid pole count %u", uint8_t(_pole_count_parameter));
return false;
}
uint8_t no_telem = 0;
const uint32_t now = AP_HAL::micros();
#endif
uint8_t not_running = 0;
for (uint8_t i=0; i<_esc_count; i++) {
auto &esc = _escs[i];
if (esc.state != ESCState::RUNNING) {
not_running++;
continue;
}
#if HAL_WITH_ESC_TELEM
if (now - esc.last_telem_us > max_telem_interval_us) {
no_telem++;
}
#endif
}
if (not_running != 0) {
hal.util->snprintf(failure_msg, failure_msg_len, "%u of %u ESCs are not running", not_running, _esc_count);
return false;
}
if (!_init_done) {
hal.util->snprintf(failure_msg, failure_msg_len, "Not initialised");
return false;
}
#if HAL_WITH_ESC_TELEM
if (no_telem != 0) {
hal.util->snprintf(failure_msg, failure_msg_len, "%u of %u ESCs are not sending telemetry", no_telem, _esc_count);
return false;
}
#endif
return true;
}
void AP_FETtecOneWire::configure_escs()
{
if (_uart->available()) {
// don't attempt to configure if we've unread data
return;
}
// note that we return as soon as we've transmitted anything in
// case we're in one-wire mode
for (uint8_t i=0; i<_esc_count; i++) {
auto &esc = _escs[i];
switch (esc.state) {
case ESCState::UNINITIALISED:
esc.state = ESCState::WANT_SEND_OK_TO_GET_RUNNING_SW_TYPE;
FALLTHROUGH;
case ESCState::WANT_SEND_OK_TO_GET_RUNNING_SW_TYPE:
// probe for bootloader or running firmware
if (transmit_config_request(PackedMessage<OK>{esc.id, OK{}})) {
esc.is_awake = false; // Assume the ESC is asleep or unavailable
esc.set_state(ESCState::WAITING_OK_FOR_RUNNING_SW_TYPE);
}
return;
case ESCState::WAITING_OK_FOR_RUNNING_SW_TYPE:
if (!esc.is_awake) {
esc.set_state(ESCState::WANT_SEND_OK_TO_GET_RUNNING_SW_TYPE); // go back to try to wake up the ESC
}
return;
case ESCState::WANT_SEND_START_FW:
if (transmit_config_request(PackedMessage<START_FW>{esc.id, START_FW{}})) {
esc.set_state(ESCState::WAITING_OK_FOR_START_FW);
}
return;
case ESCState::WAITING_OK_FOR_START_FW:
return;
#if HAL_AP_FETTEC_ONEWIRE_GET_STATIC_INFO
case ESCState::WANT_SEND_REQ_TYPE:
if (transmit_config_request(PackedMessage<REQ_TYPE>{esc.id, REQ_TYPE{}})) {
esc.set_state(ESCState::WAITING_ESC_TYPE);
}
return;
case ESCState::WAITING_ESC_TYPE:
return;
case ESCState::WANT_SEND_REQ_SW_VER:
if (transmit_config_request(PackedMessage<REQ_SW_VER>{esc.id, REQ_SW_VER{}})) {
esc.set_state(ESCState::WAITING_SW_VER);
}
return;
case ESCState::WAITING_SW_VER:
return;
case ESCState::WANT_SEND_REQ_SN:
if (transmit_config_request(PackedMessage<REQ_SN>{esc.id, REQ_SN{}})) {
esc.set_state(ESCState::WAITING_SN);
}
return;
case ESCState::WAITING_SN:
return;
#endif // HAL_AP_FETTEC_ONEWIRE_GET_STATIC_INFO
#if HAL_WITH_ESC_TELEM
case ESCState::WANT_SEND_SET_TLM_TYPE:
if (transmit_config_request(PackedMessage<SET_TLM_TYPE>{esc.id, SET_TLM_TYPE{1}})) {
esc.set_state(ESCState::WAITING_SET_TLM_TYPE_OK);
}
return;
case ESCState::WAITING_SET_TLM_TYPE_OK:
return;
#endif
case ESCState::WANT_SEND_SET_FAST_COM_LENGTH:
if (transmit_config_request(PackedMessage<SET_FAST_COM_LENGTH>{esc.id,
SET_FAST_COM_LENGTH{
_fast_throttle_byte_count,
_escs[0].id,
_esc_count
}})) {
esc.set_state(ESCState::WAITING_SET_FAST_COM_LENGTH_OK);
}
return;
case ESCState::WAITING_SET_FAST_COM_LENGTH_OK:
return;
case ESCState::RUNNING:
_running_mask |= (1 << esc.servo_ofs);
break;
}
}
}
/// periodically called from SRV_Channels::push()
void AP_FETtecOneWire::update()
{
const uint32_t now = AP_HAL::micros();
if (!_init_done) {
init();
return; // the rest of this function can only run after fully initted
}
// read all data from incoming serial:
read_data_from_uart();
if (now - _last_transmit_us < 700U) {
// in case the SRV_Channels::push() is running at very high rates, limit the period
// this function gets executed because FETtec needs a time gap between frames
_period_too_short++;
return;
}
#if defined(STM32F4)
if (_uart->tx_pending()) {
// there is unsent data in the send buffer,
// do not send more data because FETtec needs a time gap between frames
_period_too_short++;
return;
}
#endif
#if HAL_AP_FETTEC_CONFIGURE_ESCS
// run ESC configuration state machines if needed
if (_running_mask != _motor_mask) {
configure_escs();
return; // do not send fast-throttle command if a configuration command just got sent
}
#endif
// get ESC set points
uint16_t motor_pwm[_esc_count];
for (uint8_t i = 0; i < _esc_count; i++) {
const ESC &esc = _escs[i];
const SRV_Channel* c = SRV_Channels::srv_channel(esc.servo_ofs);
// check if safety switch has been pushed
if ( (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED)
|| (c == nullptr)) { // this should never ever happen, but just in case ...
motor_pwm[i] = 1000; // stop motor
continue;
}
motor_pwm[i] = constrain_int16(c->get_output_pwm(), 1000, 2000);
fet_debug("esc=%u in: %u", esc.id, motor_pwm[i]);
if (_reverse_mask & (1U << i)) {
motor_pwm[i] = 2000-motor_pwm[i];
}
}
// send motor setpoints to ESCs, and request for telemetry data
escs_set_values(motor_pwm);
#if HAL_WITH_ESC_TELEM
if (!hal.util->get_soft_armed()) {
_reverse_mask = _reverse_mask_parameter; // update this only when disarmed
// if we haven't seen an ESC in a while, the user might
// have power-cycled them. Try re-initialising.
for (uint8_t i=0; i<_esc_count; i++) {
auto &esc = _escs[i];
if (!esc.telem_expected || now - esc.last_telem_us < 1000000) {
// telem OK
continue;
}
_running_mask &= ~(1 << esc.servo_ofs);
if (now - esc.last_reset_us < 5000000) {
// only attempt reset periodically
continue;
}
if (esc.state == ESCState::UNINITIALISED) {
continue;
}
esc.last_reset_us = now;
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "No telem from esc.id=%u; resetting it", esc.id);
esc.set_state(ESCState::WANT_SEND_OK_TO_GET_RUNNING_SW_TYPE);
}
}
#endif // HAL_WITH_ESC_TELEM
}
#if HAL_AP_FETTEC_ESC_BEEP
/**
makes all connected ESCs beep
@param beep_frequency a 8 bit value from 0-255. higher make a higher beep
*/
void AP_FETtecOneWire::beep(const uint8_t beep_frequency)
{
for (uint8_t i=0; i<_esc_count; i++) {
auto &esc = _escs[i];
if (esc.state != ESCState::RUNNING) {
continue;
}
transmit_config_request(PackedMessage<Beep>{esc.id, Beep{beep_frequency}});
}
}
#endif // HAL_AP_FETTEC_ESC_BEEP
#if HAL_AP_FETTEC_ESC_LIGHT
/**
sets the racewire color for all ESCs
@param r red brightness
@param g green brightness
@param b blue brightness
*/
void AP_FETtecOneWire::led_color(const uint8_t r, const uint8_t g, const uint8_t b)
{
for (uint8_t i=0; i<_esc_count; i++) {
auto &esc = _escs[i];
if (esc.state != ESCState::RUNNING) {
continue;
}
transmit_config_request(PackedMessage<LEDColour>{esc.id, LEDColour{r, g, b}});
}
}
#endif // HAL_AP_FETTEC_ESC_LIGHT
#endif // HAL_AP_FETTEC_ONEWIRE_ENABLED