mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 23:28:32 -04:00
5058405f8c
Inhibiting gyro bias estimation during the initial tilt alignment speeds alignment. The calculation of the maxmum state index required has been modified so that it can handle all combinations of inhibited states. Limiting the maximum state index accessed by all EKF operations result in significant processing reductions when higher index states are not being used.
533 lines
24 KiB
C++
533 lines
24 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
|
|
#include "AP_NavEKF3.h"
|
|
#include "AP_NavEKF3_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
// Control filter mode transitions
|
|
void NavEKF3_core::controlFilterModes()
|
|
{
|
|
// Determine motor arm status
|
|
prevMotorsArmed = motorsArmed;
|
|
motorsArmed = hal.util->get_soft_armed();
|
|
if (motorsArmed && !prevMotorsArmed) {
|
|
// set the time at which we arm to assist with checks
|
|
timeAtArming_ms = imuSampleTime_ms;
|
|
}
|
|
|
|
// Detect if we are in flight on or ground
|
|
detectFlight();
|
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to
|
|
// avoid unnecessary operations
|
|
setWindMagStateLearningMode();
|
|
|
|
// Check the alignmnent status of the tilt and yaw attitude
|
|
// Used during initial bootstrap alignment of the filter
|
|
checkAttitudeAlignmentStatus();
|
|
|
|
// Set the type of inertial navigation aiding used
|
|
setAidingMode();
|
|
|
|
}
|
|
|
|
/*
|
|
return effective value for _magCal for this core
|
|
*/
|
|
uint8_t NavEKF3_core::effective_magCal(void) const
|
|
{
|
|
// force use of simple magnetic heading fusion for specified cores
|
|
if (frontend->_magMask & core_index) {
|
|
return 2;
|
|
} else {
|
|
return frontend->_magCal;
|
|
}
|
|
}
|
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to
|
|
// avoid unnecessary operations
|
|
void NavEKF3_core::setWindMagStateLearningMode()
|
|
{
|
|
// If we are on ground, or in constant position mode, or don't have the right vehicle and sensing to estimate wind, inhibit wind states
|
|
bool setWindInhibit = (!useAirspeed() && !assume_zero_sideslip()) || onGround || (PV_AidingMode == AID_NONE);
|
|
if (!inhibitWindStates && setWindInhibit) {
|
|
inhibitWindStates = true;
|
|
} else if (inhibitWindStates && !setWindInhibit) {
|
|
inhibitWindStates = false;
|
|
// set states and variances
|
|
if (yawAlignComplete && useAirspeed()) {
|
|
// if we have airspeed and a valid heading, set the wind states to the reciprocal of the vehicle heading
|
|
// which assumes the vehicle has launched into the wind
|
|
Vector3f tempEuler;
|
|
stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z);
|
|
float windSpeed = sqrtf(sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y)) - tasDataDelayed.tas;
|
|
stateStruct.wind_vel.x = windSpeed * cosf(tempEuler.z);
|
|
stateStruct.wind_vel.y = windSpeed * sinf(tempEuler.z);
|
|
|
|
// set the wind sate variances to the measurement uncertainty
|
|
for (uint8_t index=22; index<=23; index++) {
|
|
P[index][index] = sq(constrain_float(frontend->_easNoise, 0.5f, 5.0f) * constrain_float(_ahrs->get_EAS2TAS(), 0.9f, 10.0f));
|
|
}
|
|
} else {
|
|
// set the variances using a typical wind speed
|
|
for (uint8_t index=22; index<=23; index++) {
|
|
P[index][index] = sq(5.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
// determine if the vehicle is manoevring
|
|
if (accNavMagHoriz > 0.5f) {
|
|
manoeuvring = true;
|
|
} else {
|
|
manoeuvring = false;
|
|
}
|
|
|
|
// Determine if learning of magnetic field states has been requested by the user
|
|
uint8_t magCal = effective_magCal();
|
|
bool magCalRequested =
|
|
((magCal == 0) && inFlight) || // when flying
|
|
((magCal == 1) && manoeuvring) || // when manoeuvring
|
|
((magCal == 3) && finalInflightYawInit && finalInflightMagInit) || // when initial in-air yaw and mag field reset is complete
|
|
(magCal == 4); // all the time
|
|
|
|
// Deny mag calibration request if we aren't using the compass, it has been inhibited by the user,
|
|
// we do not have an absolute position reference or are on the ground (unless explicitly requested by the user)
|
|
bool magCalDenied = !use_compass() || (magCal == 2) || (onGround && magCal != 4);
|
|
|
|
// Inhibit the magnetic field calibration if not requested or denied
|
|
bool setMagInhibit = !magCalRequested || magCalDenied;
|
|
if (!inhibitMagStates && setMagInhibit) {
|
|
inhibitMagStates = true;
|
|
} else if (inhibitMagStates && !setMagInhibit) {
|
|
inhibitMagStates = false;
|
|
if (magFieldLearned) {
|
|
// if we have already learned the field states, then retain the learned variances
|
|
P[16][16] = earthMagFieldVar.x;
|
|
P[17][17] = earthMagFieldVar.y;
|
|
P[18][18] = earthMagFieldVar.z;
|
|
P[19][19] = bodyMagFieldVar.x;
|
|
P[20][20] = bodyMagFieldVar.y;
|
|
P[21][21] = bodyMagFieldVar.z;
|
|
} else {
|
|
// set the variances equal to the observation variances
|
|
for (uint8_t index=18; index<=21; index++) {
|
|
P[index][index] = sq(frontend->_magNoise);
|
|
}
|
|
|
|
// set the NE earth magnetic field states using the published declination
|
|
// and set the corresponding variances and covariances
|
|
alignMagStateDeclination();
|
|
|
|
}
|
|
// request a reset of the yaw and magnetic field states if not done before
|
|
if (!magStateInitComplete || (!finalInflightMagInit && inFlight)) {
|
|
magYawResetRequest = true;
|
|
}
|
|
}
|
|
|
|
// inhibit delta velocity bias learning if we have not yet aligned the tilt
|
|
if (tiltAlignComplete && inhibitDelVelBiasStates) {
|
|
// activate the states
|
|
inhibitDelVelBiasStates = false;
|
|
// set the initial covariance values
|
|
P[13][13] = sq(ACCEL_BIAS_LIM_SCALER * frontend->_accBiasLim * dtEkfAvg);
|
|
P[14][14] = P[13][13];
|
|
P[15][15] = P[13][13];
|
|
}
|
|
|
|
if (tiltAlignComplete && inhibitDelAngBiasStates) {
|
|
// activate the states
|
|
inhibitDelAngBiasStates = false;
|
|
// set the initial covariance values
|
|
P[10][10] = sq(radians(InitialGyroBiasUncertainty() * dtEkfAvg));
|
|
P[11][11] = P[10][10];
|
|
P[12][12] = P[10][10];
|
|
}
|
|
|
|
// If on ground we clear the flag indicating that the magnetic field in-flight initialisation has been completed
|
|
// because we want it re-done for each takeoff
|
|
if (onGround) {
|
|
finalInflightYawInit = false;
|
|
finalInflightMagInit = false;
|
|
}
|
|
|
|
// Adjust the indexing limits used to address the covariance, states and other EKF arrays to avoid unnecessary operations
|
|
// if we are not using those states
|
|
if (inhibitWindStates) {
|
|
if (inhibitMagStates) {
|
|
if (inhibitDelVelBiasStates) {
|
|
if (inhibitDelAngBiasStates) {
|
|
stateIndexLim = 9;
|
|
} else {
|
|
stateIndexLim = 12;
|
|
}
|
|
} else {
|
|
stateIndexLim = 15;
|
|
}
|
|
} else {
|
|
stateIndexLim = 21;
|
|
}
|
|
} else {
|
|
stateIndexLim = 23;
|
|
}
|
|
}
|
|
|
|
// Set inertial navigation aiding mode
|
|
void NavEKF3_core::setAidingMode()
|
|
{
|
|
// Save the previous status so we can detect when it has changed
|
|
PV_AidingModePrev = PV_AidingMode;
|
|
|
|
// Check that the gyro bias variance has converged
|
|
checkGyroCalStatus();
|
|
|
|
// Determine if we should change aiding mode
|
|
if (PV_AidingMode == AID_NONE) {
|
|
// Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete
|
|
// and IMU gyro bias estimates have stabilised
|
|
// If GPS usage has been prohiited then we use flow aiding provided optical flow data is present
|
|
// GPS aiding is the preferred option unless excluded by the user
|
|
if(readyToUseGPS() || readyToUseRangeBeacon()) {
|
|
PV_AidingMode = AID_ABSOLUTE;
|
|
} else if (readyToUseOptFlow() || readyToUseBodyOdm()) {
|
|
PV_AidingMode = AID_RELATIVE;
|
|
}
|
|
} else if (PV_AidingMode == AID_RELATIVE) {
|
|
// Check if the optical flow sensor has timed out
|
|
bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000);
|
|
// Check if the fusion has timed out (flow measurements have been rejected for too long)
|
|
bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000);
|
|
// Check if the body odometry flow sensor has timed out
|
|
bool bodyOdmSensorTimeout = ((imuSampleTime_ms - bodyOdmMeasTime_ms) > 5000);
|
|
// Check if the fusion has timed out (body odometry measurements have been rejected for too long)
|
|
bool bodyOdmFusionTimeout = ((imuSampleTime_ms - prevBodyVelFuseTime_ms) > 5000);
|
|
// Enable switch to absolute position mode if GPS or range beacon data is available
|
|
// If GPS or range beacons data is not available and flow fusion has timed out, then fall-back to no-aiding
|
|
if(readyToUseGPS() || readyToUseRangeBeacon()) {
|
|
PV_AidingMode = AID_ABSOLUTE;
|
|
} else if ((flowSensorTimeout || flowFusionTimeout) && (bodyOdmSensorTimeout || bodyOdmFusionTimeout)) {
|
|
PV_AidingMode = AID_NONE;
|
|
}
|
|
} else if (PV_AidingMode == AID_ABSOLUTE) {
|
|
// Find the minimum time without data required to trigger any check
|
|
uint16_t minTestTime_ms = MIN(frontend->tiltDriftTimeMax_ms, MIN(frontend->posRetryTimeNoVel_ms,frontend->posRetryTimeUseVel_ms));
|
|
|
|
// Check if optical flow data is being used
|
|
bool optFlowUsed = (imuSampleTime_ms - prevFlowFuseTime_ms <= minTestTime_ms);
|
|
|
|
// Check if body odometry data is being used
|
|
bool bodyOdmUsed = (imuSampleTime_ms - prevBodyVelFuseTime_ms <= minTestTime_ms);
|
|
|
|
// Check if airspeed data is being used
|
|
bool airSpdUsed = (imuSampleTime_ms - lastTasPassTime_ms <= minTestTime_ms);
|
|
|
|
// Check if range beacon data is being used
|
|
bool rngBcnUsed = (imuSampleTime_ms - lastRngBcnPassTime_ms <= minTestTime_ms);
|
|
|
|
// Check if GPS is being used
|
|
bool gpsPosUsed = (imuSampleTime_ms - lastPosPassTime_ms <= minTestTime_ms);
|
|
bool gpsVelUsed = (imuSampleTime_ms - lastVelPassTime_ms <= minTestTime_ms);
|
|
|
|
// Check if attitude drift has been constrained by a measurement source
|
|
bool attAiding = gpsPosUsed || gpsVelUsed || optFlowUsed || airSpdUsed || rngBcnUsed || bodyOdmUsed;
|
|
|
|
// check if velocity drift has been constrained by a measurement source
|
|
bool velAiding = gpsVelUsed || airSpdUsed || optFlowUsed || bodyOdmUsed;
|
|
|
|
// check if position drift has been constrained by a measurement source
|
|
bool posAiding = gpsPosUsed || rngBcnUsed;
|
|
|
|
// Check if the loss of attitude aiding has become critical
|
|
bool attAidLossCritical = false;
|
|
if (!attAiding) {
|
|
attAidLossCritical = (imuSampleTime_ms - prevFlowFuseTime_ms > frontend->tiltDriftTimeMax_ms) &&
|
|
(imuSampleTime_ms - lastTasPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
|
|
(imuSampleTime_ms - lastRngBcnPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
|
|
(imuSampleTime_ms - lastPosPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
|
|
(imuSampleTime_ms - lastVelPassTime_ms > frontend->tiltDriftTimeMax_ms);
|
|
}
|
|
|
|
// Check if the loss of position accuracy has become critical
|
|
bool posAidLossCritical = false;
|
|
if (!posAiding ) {
|
|
uint16_t maxLossTime_ms;
|
|
if (!velAiding) {
|
|
maxLossTime_ms = frontend->posRetryTimeNoVel_ms;
|
|
} else {
|
|
maxLossTime_ms = frontend->posRetryTimeUseVel_ms;
|
|
}
|
|
posAidLossCritical = (imuSampleTime_ms - lastRngBcnPassTime_ms > maxLossTime_ms) &&
|
|
(imuSampleTime_ms - lastPosPassTime_ms > maxLossTime_ms);
|
|
}
|
|
|
|
if (attAidLossCritical) {
|
|
// if the loss of attitude data is critical, then put the filter into a constant position mode
|
|
PV_AidingMode = AID_NONE;
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
rngBcnTimeout = true;
|
|
tasTimeout = true;
|
|
gpsNotAvailable = true;
|
|
} else if (posAidLossCritical) {
|
|
// if the loss of position is critical, declare all sources of position aiding as being timed out
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
rngBcnTimeout = true;
|
|
gpsNotAvailable = true;
|
|
}
|
|
|
|
}
|
|
|
|
// check to see if we are starting or stopping aiding and set states and modes as required
|
|
if (PV_AidingMode != PV_AidingModePrev) {
|
|
// set various usage modes based on the condition when we start aiding. These are then held until aiding is stopped.
|
|
if (PV_AidingMode == AID_NONE) {
|
|
// We have ceased aiding
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_WARNING, "EKF3 IMU%u stopped aiding",(unsigned)imu_index);
|
|
// When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
// Reset the normalised innovation to avoid false failing bad fusion tests
|
|
velTestRatio = 0.0f;
|
|
posTestRatio = 0.0f;
|
|
// store the current position to be used to keep reporting the last known position
|
|
lastKnownPositionNE.x = stateStruct.position.x;
|
|
lastKnownPositionNE.y = stateStruct.position.y;
|
|
// initialise filtered altitude used to provide a takeoff reference to current baro on disarm
|
|
// this reduces the time required for the baro noise filter to settle before the filtered baro data can be used
|
|
meaHgtAtTakeOff = baroDataDelayed.hgt;
|
|
// reset the vertical position state to faster recover from baro errors experienced during touchdown
|
|
stateStruct.position.z = -meaHgtAtTakeOff;
|
|
// reset relative aiding sensor fusion activity status
|
|
flowFusionActive = false;
|
|
bodyVelFusionActive = false;
|
|
} else if (PV_AidingMode == AID_RELATIVE) {
|
|
// We are doing relative position navigation where velocity errors are constrained, but position drift will occur
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u started relative aiding",(unsigned)imu_index);
|
|
if (readyToUseOptFlow()) {
|
|
// Reset time stamps
|
|
flowValidMeaTime_ms = imuSampleTime_ms;
|
|
prevFlowFuseTime_ms = imuSampleTime_ms;
|
|
} else if (readyToUseBodyOdm()) {
|
|
// Reset time stamps
|
|
lastbodyVelPassTime_ms = imuSampleTime_ms;
|
|
prevBodyVelFuseTime_ms = imuSampleTime_ms;
|
|
}
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
} else if (PV_AidingMode == AID_ABSOLUTE) {
|
|
if (readyToUseGPS()) {
|
|
// We are commencing aiding using GPS - this is the preferred method
|
|
posResetSource = GPS;
|
|
velResetSource = GPS;
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u is using GPS",(unsigned)imu_index);
|
|
} else if (readyToUseRangeBeacon()) {
|
|
// We are commencing aiding using range beacons
|
|
posResetSource = RNGBCN;
|
|
velResetSource = DEFAULT;
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u is using range beacons",(unsigned)imu_index);
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u initial pos NE = %3.1f,%3.1f (m)",(unsigned)imu_index,(double)receiverPos.x,(double)receiverPos.y);
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u initial beacon pos D offset = %3.1f (m)",(unsigned)imu_index,(double)bcnPosOffsetNED.z);
|
|
}
|
|
|
|
// clear timeout flags as a precaution to avoid triggering any additional transitions
|
|
posTimeout = false;
|
|
velTimeout = false;
|
|
|
|
// reset the last fusion accepted times to prevent unwanted activation of timeout logic
|
|
lastPosPassTime_ms = imuSampleTime_ms;
|
|
lastVelPassTime_ms = imuSampleTime_ms;
|
|
lastRngBcnPassTime_ms = imuSampleTime_ms;
|
|
}
|
|
|
|
// Always reset the position and velocity when changing mode
|
|
ResetVelocity();
|
|
ResetPosition();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Check the tilt and yaw alignmnent status
|
|
// Used during initial bootstrap alignment of the filter
|
|
void NavEKF3_core::checkAttitudeAlignmentStatus()
|
|
{
|
|
// Check for tilt convergence - used during initial alignment
|
|
// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
|
|
// and declare the tilt alignment complete
|
|
if (!tiltAlignComplete) {
|
|
Vector3f angleErrVarVec = calcRotVecVariances();
|
|
if ((angleErrVarVec.x + angleErrVarVec.y) < sq(0.05235f)) {
|
|
tiltAlignComplete = true;
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u tilt alignment complete\n",(unsigned)imu_index);
|
|
}
|
|
}
|
|
|
|
// submit yaw and magnetic field reset request
|
|
if (!yawAlignComplete && tiltAlignComplete && use_compass()) {
|
|
magYawResetRequest = true;
|
|
}
|
|
}
|
|
|
|
// return true if we should use the airspeed sensor
|
|
bool NavEKF3_core::useAirspeed(void) const
|
|
{
|
|
return _ahrs->airspeed_sensor_enabled();
|
|
}
|
|
|
|
// return true if we should use the range finder sensor
|
|
bool NavEKF3_core::useRngFinder(void) const
|
|
{
|
|
// TO-DO add code to set this based in setting of optical flow use parameter and presence of sensor
|
|
return true;
|
|
}
|
|
|
|
// return true if the filter is ready to start using optical flow measurements
|
|
bool NavEKF3_core::readyToUseOptFlow(void) const
|
|
{
|
|
// We need stable roll/pitch angles and gyro bias estimates but do not need the yaw angle aligned to use optical flow
|
|
return (imuSampleTime_ms - flowMeaTime_ms < 200) && tiltAlignComplete && delAngBiasLearned;
|
|
}
|
|
|
|
// return true if the filter is ready to start using body frame odometry measurements
|
|
bool NavEKF3_core::readyToUseBodyOdm(void) const
|
|
{
|
|
// We need stable roll/pitch angles and gyro bias estimates but do not need the yaw angle aligned to use these measurements
|
|
return (imuSampleTime_ms - bodyOdmMeasTime_ms < 200)
|
|
&& bodyOdmDataNew.velErr < 1.0f
|
|
&& tiltAlignComplete
|
|
&& delAngBiasLearned;
|
|
}
|
|
|
|
// return true if the filter to be ready to use gps
|
|
bool NavEKF3_core::readyToUseGPS(void) const
|
|
{
|
|
return validOrigin && tiltAlignComplete && yawAlignComplete && delAngBiasLearned && gpsGoodToAlign && (frontend->_fusionModeGPS != 3) && gpsDataToFuse && !gpsInhibit;
|
|
}
|
|
|
|
// return true if the filter to be ready to use the beacon range measurements
|
|
bool NavEKF3_core::readyToUseRangeBeacon(void) const
|
|
{
|
|
return tiltAlignComplete && yawAlignComplete && delAngBiasLearned && rngBcnGoodToAlign && rngBcnDataToFuse;
|
|
}
|
|
|
|
// return true if we should use the compass
|
|
bool NavEKF3_core::use_compass(void) const
|
|
{
|
|
return _ahrs->get_compass() && _ahrs->get_compass()->use_for_yaw(magSelectIndex) && !allMagSensorsFailed;
|
|
}
|
|
|
|
/*
|
|
should we assume zero sideslip?
|
|
*/
|
|
bool NavEKF3_core::assume_zero_sideslip(void) const
|
|
{
|
|
// we don't assume zero sideslip for ground vehicles as EKF could
|
|
// be quite sensitive to a rapid spin of the ground vehicle if
|
|
// traction is lost
|
|
return _ahrs->get_fly_forward() && _ahrs->get_vehicle_class() != AHRS_VEHICLE_GROUND;
|
|
}
|
|
|
|
// set the LLH location of the filters NED origin
|
|
bool NavEKF3_core::setOriginLLH(const Location &loc)
|
|
{
|
|
if (PV_AidingMode == AID_ABSOLUTE) {
|
|
return false;
|
|
}
|
|
EKF_origin = loc;
|
|
ekfGpsRefHgt = (double)0.01 * (double)EKF_origin.alt;
|
|
// define Earth rotation vector in the NED navigation frame at the origin
|
|
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
|
|
validOrigin = true;
|
|
return true;
|
|
}
|
|
|
|
// Set the NED origin to be used until the next filter reset
|
|
void NavEKF3_core::setOrigin()
|
|
{
|
|
// assume origin at current GPS location (no averaging)
|
|
EKF_origin = _ahrs->get_gps().location();
|
|
ekfGpsRefHgt = (double)0.01 * (double)EKF_origin.alt;
|
|
// define Earth rotation vector in the NED navigation frame at the origin
|
|
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
|
|
validOrigin = true;
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u Origin set to GPS",(unsigned)imu_index);
|
|
}
|
|
|
|
// record a yaw reset event
|
|
void NavEKF3_core::recordYawReset()
|
|
{
|
|
yawAlignComplete = true;
|
|
if (inFlight) {
|
|
finalInflightYawInit = true;
|
|
}
|
|
}
|
|
|
|
// set the class variable true if the delta angle bias variances are sufficiently small
|
|
void NavEKF3_core::checkGyroCalStatus(void)
|
|
{
|
|
// check delta angle bias variances
|
|
const float delAngBiasVarMax = sq(radians(0.15f * dtEkfAvg));
|
|
delAngBiasLearned = (P[10][10] <= delAngBiasVarMax) &&
|
|
(P[11][11] <= delAngBiasVarMax) &&
|
|
(P[12][12] <= delAngBiasVarMax);
|
|
}
|
|
|
|
// Commands the EKF to not use GPS.
|
|
// This command must be sent prior to vehicle arming and EKF commencement of GPS usage
|
|
// Returns 0 if command rejected
|
|
// Returns 1 if command accepted
|
|
uint8_t NavEKF3_core::setInhibitGPS(void)
|
|
{
|
|
if((PV_AidingMode == AID_ABSOLUTE) || motorsArmed) {
|
|
return 0;
|
|
} else {
|
|
gpsInhibit = true;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Update the filter status
|
|
void NavEKF3_core::updateFilterStatus(void)
|
|
{
|
|
// init return value
|
|
filterStatus.value = 0;
|
|
bool doingBodyVelNav = (PV_AidingMode != AID_NONE) && (imuSampleTime_ms - prevBodyVelFuseTime_ms < 5000);
|
|
bool doingFlowNav = (PV_AidingMode != AID_NONE) && flowDataValid;
|
|
bool doingWindRelNav = !tasTimeout && assume_zero_sideslip();
|
|
bool doingNormalGpsNav = !posTimeout && (PV_AidingMode == AID_ABSOLUTE);
|
|
bool someVertRefData = (!velTimeout && useGpsVertVel) || !hgtTimeout;
|
|
bool someHorizRefData = !(velTimeout && posTimeout && tasTimeout) || doingFlowNav || doingBodyVelNav;
|
|
bool filterHealthy = healthy() && tiltAlignComplete && (yawAlignComplete || (!use_compass() && (PV_AidingMode != AID_ABSOLUTE)));
|
|
|
|
// If GPS height usage is specified, height is considered to be inaccurate until the GPS passes all checks
|
|
bool hgtNotAccurate = (frontend->_altSource == 2) && !validOrigin;
|
|
|
|
// set individual flags
|
|
filterStatus.flags.attitude = !stateStruct.quat.is_nan() && filterHealthy; // attitude valid (we need a better check)
|
|
filterStatus.flags.horiz_vel = someHorizRefData && filterHealthy; // horizontal velocity estimate valid
|
|
filterStatus.flags.vert_vel = someVertRefData && filterHealthy; // vertical velocity estimate valid
|
|
filterStatus.flags.horiz_pos_rel = ((doingFlowNav && gndOffsetValid) || doingWindRelNav || doingNormalGpsNav || doingBodyVelNav) && filterHealthy; // relative horizontal position estimate valid
|
|
filterStatus.flags.horiz_pos_abs = doingNormalGpsNav && filterHealthy; // absolute horizontal position estimate valid
|
|
filterStatus.flags.vert_pos = !hgtTimeout && filterHealthy && !hgtNotAccurate; // vertical position estimate valid
|
|
filterStatus.flags.terrain_alt = gndOffsetValid && filterHealthy; // terrain height estimate valid
|
|
filterStatus.flags.const_pos_mode = (PV_AidingMode == AID_NONE) && filterHealthy; // constant position mode
|
|
filterStatus.flags.pred_horiz_pos_rel = filterStatus.flags.horiz_pos_rel; // EKF3 enters the required mode before flight
|
|
filterStatus.flags.pred_horiz_pos_abs = filterStatus.flags.horiz_pos_abs; // EKF3 enters the required mode before flight
|
|
filterStatus.flags.takeoff_detected = takeOffDetected; // takeoff for optical flow navigation has been detected
|
|
filterStatus.flags.takeoff = expectGndEffectTakeoff; // The EKF has been told to expect takeoff and is in a ground effect mitigation mode
|
|
filterStatus.flags.touchdown = expectGndEffectTouchdown; // The EKF has been told to detect touchdown and is in a ground effect mitigation mode
|
|
filterStatus.flags.using_gps = ((imuSampleTime_ms - lastPosPassTime_ms) < 4000) && (PV_AidingMode == AID_ABSOLUTE);
|
|
filterStatus.flags.gps_glitching = !gpsAccuracyGood && (PV_AidingMode == AID_ABSOLUTE); // The GPS is glitching
|
|
}
|
|
|
|
#endif // HAL_CPU_CLASS
|