ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_MPU6000.cpp

1611 lines
59 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include "AP_InertialSensor_MPU6000.h"
extern const AP_HAL::HAL& hal;
// MPU6000 accelerometer scaling
#define MPU6000_ACCEL_SCALE_1G (GRAVITY / 4096.0f)
// MPU 6000 registers
#define MPUREG_XG_OFFS_TC 0x00
#define MPUREG_YG_OFFS_TC 0x01
#define MPUREG_ZG_OFFS_TC 0x02
#define MPUREG_X_FINE_GAIN 0x03
#define MPUREG_Y_FINE_GAIN 0x04
#define MPUREG_Z_FINE_GAIN 0x05
#define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte)
#define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte)
#define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte)
#define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte)
#define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte)
#define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte)
#define MPUREG_PRODUCT_ID 0x0C // Product ID Register
#define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte)
#define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte)
#define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte)
#define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte)
#define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte)
#define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte)
#define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(<this value>+1) = 200Hz
# define MPUREG_SMPLRT_1000HZ 0x00
# define MPUREG_SMPLRT_500HZ 0x01
# define MPUREG_SMPLRT_250HZ 0x03
# define MPUREG_SMPLRT_200HZ 0x04
# define MPUREG_SMPLRT_100HZ 0x09
# define MPUREG_SMPLRT_50HZ 0x13
#define MPUREG_CONFIG 0x1A
#define MPUREG_GYRO_CONFIG 0x1B
// bit definitions for MPUREG_GYRO_CONFIG
# define BITS_GYRO_FS_250DPS 0x00
# define BITS_GYRO_FS_500DPS 0x08
# define BITS_GYRO_FS_1000DPS 0x10
# define BITS_GYRO_FS_2000DPS 0x18
# define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits
# define BITS_GYRO_ZGYRO_SELFTEST 0x20
# define BITS_GYRO_YGYRO_SELFTEST 0x40
# define BITS_GYRO_XGYRO_SELFTEST 0x80
#define MPUREG_ACCEL_CONFIG 0x1C
#define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this
#define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms
#define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation.
#define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms.
#define MPUREG_FIFO_EN 0x23
#define MPUREG_INT_PIN_CFG 0x37
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin
#define MPUREG_INT_ENABLE 0x38
// bit definitions for MPUREG_INT_ENABLE
# define BIT_RAW_RDY_EN 0x01
# define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems
# define BIT_UNKNOWN_INT_EN 0x04
# define BIT_I2C_MST_INT_EN 0x08
# define BIT_FIFO_OFLOW_EN 0x10
# define BIT_ZMOT_EN 0x20
# define BIT_MOT_EN 0x40
# define BIT_FF_EN 0x80
#define MPUREG_INT_STATUS 0x3A
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired)
# define BIT_RAW_RDY_INT 0x01
# define BIT_DMP_INT 0x02
# define BIT_UNKNOWN_INT 0x04
# define BIT_I2C_MST_INT 0x08
# define BIT_FIFO_OFLOW_INT 0x10
# define BIT_ZMOT_INT 0x20
# define BIT_MOT_INT 0x40
# define BIT_FF_INT 0x80
#define MPUREG_ACCEL_XOUT_H 0x3B
#define MPUREG_ACCEL_XOUT_L 0x3C
#define MPUREG_ACCEL_YOUT_H 0x3D
#define MPUREG_ACCEL_YOUT_L 0x3E
#define MPUREG_ACCEL_ZOUT_H 0x3F
#define MPUREG_ACCEL_ZOUT_L 0x40
#define MPUREG_TEMP_OUT_H 0x41
#define MPUREG_TEMP_OUT_L 0x42
#define MPUREG_GYRO_XOUT_H 0x43
#define MPUREG_GYRO_XOUT_L 0x44
#define MPUREG_GYRO_YOUT_H 0x45
#define MPUREG_GYRO_YOUT_L 0x46
#define MPUREG_GYRO_ZOUT_H 0x47
#define MPUREG_GYRO_ZOUT_L 0x48
#define MPUREG_USER_CTRL 0x6A
// bit definitions for MPUREG_USER_CTRL
# define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp)
# define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set)
# define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer
# define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface
# define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors
# define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations
# define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations
#define MPUREG_PWR_MGMT_1 0x6B
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
#define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode
#define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers)
#define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory)
#define MPUREG_MEM_R_W 0x6F // DMP related register
#define MPUREG_DMP_CFG_1 0x70 // DMP related register
#define MPUREG_DMP_CFG_2 0x71 // DMP related register
#define MPUREG_FIFO_COUNTH 0x72
#define MPUREG_FIFO_COUNTL 0x73
#define MPUREG_FIFO_R_W 0x74
#define MPUREG_WHOAMI 0x75
// Configuration bits MPU 3000 and MPU 6000 (not revised)?
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00
#define BITS_DLPF_CFG_188HZ 0x01
#define BITS_DLPF_CFG_98HZ 0x02
#define BITS_DLPF_CFG_42HZ 0x03
#define BITS_DLPF_CFG_20HZ 0x04
#define BITS_DLPF_CFG_10HZ 0x05
#define BITS_DLPF_CFG_5HZ 0x06
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
#define BITS_DLPF_CFG_MASK 0x07
// Product ID Description for MPU6000
// high 4 bits low 4 bits
// Product Name Product Revision
#define MPU6000ES_REV_C4 0x14 // 0001 0100
#define MPU6000ES_REV_C5 0x15 // 0001 0101
#define MPU6000ES_REV_D6 0x16 // 0001 0110
#define MPU6000ES_REV_D7 0x17 // 0001 0111
#define MPU6000ES_REV_D8 0x18 // 0001 1000
#define MPU6000_REV_C4 0x54 // 0101 0100
#define MPU6000_REV_C5 0x55 // 0101 0101
#define MPU6000_REV_D6 0x56 // 0101 0110
#define MPU6000_REV_D7 0x57 // 0101 0111
#define MPU6000_REV_D8 0x58 // 0101 1000
#define MPU6000_REV_D9 0x59 // 0101 1001
// DMP output rate constants
#define MPU6000_200HZ 0x00 // default value
#define MPU6000_100HZ 0x01
#define MPU6000_66HZ 0x02
#define MPU6000_50HZ 0x03
// DMP FIFO constants
// Default quaternion FIFO size (4*4) + Footer(2)
#define FIFO_PACKET_SIZE 18
// Rate of the gyro bias from gravity correction (200Hz/4) => 50Hz
#define GYRO_BIAS_FROM_GRAVITY_RATE 4
// Default gain for accel fusion (with gyros)
#define DEFAULT_ACCEL_FUSION_GAIN 0x80
/*
* RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
*/
const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532 / 16.4);
/* pch: I believe the accel and gyro indicies are correct
* but somone else should please confirm.
*
* jamesjb: Y and Z axes are flipped on the PX4FMU
*/
const uint8_t AP_InertialSensor_MPU6000::_gyro_data_index[3] = { 5, 4, 6 };
const uint8_t AP_InertialSensor_MPU6000::_accel_data_index[3] = { 1, 0, 2 };
#if CONFIG_HAL_BOARD == HAL_BOARD_SMACCM
const int8_t AP_InertialSensor_MPU6000::_gyro_data_sign[3] = { 1, -1, 1 };
const int8_t AP_InertialSensor_MPU6000::_accel_data_sign[3] = { 1, -1, 1 };
#else
const int8_t AP_InertialSensor_MPU6000::_gyro_data_sign[3] = { 1, 1, -1 };
const int8_t AP_InertialSensor_MPU6000::_accel_data_sign[3] = { 1, 1, -1 };
#endif
const uint8_t AP_InertialSensor_MPU6000::_temp_data_index = 3;
int16_t AP_InertialSensor_MPU6000::_mpu6000_product_id = AP_PRODUCT_ID_NONE;
AP_HAL::DigitalSource *AP_InertialSensor_MPU6000::_drdy_pin = NULL;
// time we start collecting sample (reset on update)
// time latest sample was collected
static volatile uint32_t _last_sample_time_micros = 0;
// DMP related static variables
bool AP_InertialSensor_MPU6000::_dmp_initialised = false;
// high byte of number of elements in fifo buffer
uint8_t AP_InertialSensor_MPU6000::_fifoCountH;
// low byte of number of elements in fifo buffer
uint8_t AP_InertialSensor_MPU6000::_fifoCountL;
// holds the 4 quaternions representing attitude taken directly from the DMP
Quaternion AP_InertialSensor_MPU6000::quaternion;
/* Static SPI device driver */
AP_HAL::SPIDeviceDriver* AP_InertialSensor_MPU6000::_spi = NULL;
AP_HAL::Semaphore* AP_InertialSensor_MPU6000::_spi_sem = NULL;
/*
* RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2)
*
* See note below about accel scaling of engineering sample MPU6k
* variants however
*/
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000()
{
_temp = 0;
_initialised = false;
_dmp_initialised = false;
}
uint16_t AP_InertialSensor_MPU6000::_init_sensor( Sample_rate sample_rate )
{
if (_initialised) return _mpu6000_product_id;
_initialised = true;
_spi = hal.spi->device(AP_HAL::SPIDevice_MPU6000);
_spi_sem = _spi->get_semaphore();
/* Pin 70 defined especially to hook
up PE6 to the hal.gpio abstraction.
(It is not a valid pin under Arduino.) */
_drdy_pin = hal.gpio->channel(70);
hal.scheduler->suspend_timer_procs();
uint8_t tries = 0;
do {
bool success = hardware_init(sample_rate);
if (success) {
hal.scheduler->delay(_msec_per_sample+2);
if (_data_ready()) {
break;
} else {
hal.console->println_P(
PSTR("MPU6000 startup failed: no data ready"));
}
}
if (tries++ > 5) {
hal.scheduler->panic(PSTR("PANIC: failed to boot MPU6000 5 times"));
}
} while (1);
hal.scheduler->resume_timer_procs();
/* read the first lot of data.
* _read_data_transaction requires the spi semaphore to be taken by
* its caller. */
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction();
// start the timer process to read samples
hal.scheduler->register_timer_process(_poll_data);
#if MPU6000_DEBUG
_dump_registers();
#endif
return _mpu6000_product_id;
}
// accumulation in ISR - must be read with interrupts disabled
// the sum of the values since last read
static volatile int32_t _sum[7];
// how many values we've accumulated since last read
static volatile uint16_t _count;
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
void AP_InertialSensor_MPU6000::wait_for_sample()
{
uint32_t tstart = hal.scheduler->micros();
while (num_samples_available() == 0) {
uint32_t now = hal.scheduler->micros();
uint32_t dt = now - tstart;
if (dt > 50000) {
hal.scheduler->panic(
PSTR("PANIC: AP_InertialSensor_MPU6000::update "
"waited 50ms for data from interrupt"));
}
}
}
bool AP_InertialSensor_MPU6000::update( void )
{
int32_t sum[7];
float count_scale;
Vector3f accel_scale = _accel_scale.get();
// wait for at least 1 sample
wait_for_sample();
// disable timer procs for mininum time
hal.scheduler->suspend_timer_procs();
/** ATOMIC SECTION w/r/t TIMER PROCESS */
{
for (int i=0; i<7; i++) {
sum[i] = _sum[i];
_sum[i] = 0;
}
_num_samples = _count;
_count = 0;
}
hal.scheduler->resume_timer_procs();
count_scale = 1.0f / _num_samples;
_gyro = Vector3f(_gyro_data_sign[0] * sum[_gyro_data_index[0]],
_gyro_data_sign[1] * sum[_gyro_data_index[1]],
_gyro_data_sign[2] * sum[_gyro_data_index[2]]);
_gyro.rotate(_board_orientation);
_gyro *= _gyro_scale * count_scale;
_gyro -= _gyro_offset;
_accel = Vector3f(_accel_data_sign[0] * sum[_accel_data_index[0]],
_accel_data_sign[1] * sum[_accel_data_index[1]],
_accel_data_sign[2] * sum[_accel_data_index[2]]);
_accel.rotate(_board_orientation);
_accel *= count_scale * MPU6000_ACCEL_SCALE_1G;
_accel.x *= accel_scale.x;
_accel.y *= accel_scale.y;
_accel.z *= accel_scale.z;
_accel -= _accel_offset;
_temp = _temp_to_celsius(sum[_temp_data_index] * count_scale);
return true;
}
bool AP_InertialSensor_MPU6000::new_data_available( void )
{
return _count != 0;
}
float AP_InertialSensor_MPU6000::temperature() {
return _temp;
}
/*================ HARDWARE FUNCTIONS ==================== */
/**
* Return true if the MPU6000 has new data available for reading.
*
* We use the data ready pin if it is available. Otherwise, read the
* status register.
*/
bool AP_InertialSensor_MPU6000::_data_ready()
{
if (_drdy_pin) {
return _drdy_pin->read() != 0;
}
if (hal.scheduler->in_timerprocess()) {
bool got = _spi_sem->take_nonblocking();
if (got) {
uint8_t status = _register_read(MPUREG_INT_STATUS);
_spi_sem->give();
return (status & BIT_RAW_RDY_INT) != 0;
} else {
return false;
}
} else {
bool got = _spi_sem->take(10);
if (got) {
uint8_t status = _register_read(MPUREG_INT_STATUS);
_spi_sem->give();
return (status & BIT_RAW_RDY_INT) != 0;
} else {
hal.scheduler->panic(
PSTR("PANIC: AP_InertialSensor_MPU6000::_data_ready failed to "
"take SPI semaphore synchronously"));
}
}
return false;
}
/**
* Timer process to poll for new data from the MPU6000.
*/
void AP_InertialSensor_MPU6000::_poll_data(uint32_t now)
{
if (_data_ready()) {
if (hal.scheduler->in_timerprocess()) {
_read_data_from_timerprocess();
} else {
/* Synchronous read - take semaphore */
bool got = _spi_sem->take(10);
if (got) {
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction();
_spi_sem->give();
} else {
hal.scheduler->panic(
PSTR("PANIC: AP_InertialSensor_MPU6000::_poll_data "
"failed to take SPI semaphore synchronously"));
}
}
}
}
/*
* this is called from the _poll_data, in the timer process context.
* when the MPU6000 has new sensor data available and add it to _sum[] to
* ensure this is the case, these other devices must perform their spi reads
* after being called by the AP_TimerProcess.
*/
void AP_InertialSensor_MPU6000::_read_data_from_timerprocess()
{
static uint8_t semfail_ctr = 0;
bool got = _spi_sem->take_nonblocking();
if (!got) {
semfail_ctr++;
if (semfail_ctr > 100) {
hal.scheduler->panic(PSTR("PANIC: failed to take SPI semaphore "
"100 times in AP_InertialSensor_MPU6000::"
"_read_data_from_timerprocess"));
}
return;
} else {
semfail_ctr = 0;
}
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction();
_spi_sem->give();
}
void AP_InertialSensor_MPU6000::_read_data_transaction() {
/* one resister address followed by seven 2-byte registers */
uint8_t tx[15];
uint8_t rx[15];
memset(tx,0,15);
tx[0] = MPUREG_ACCEL_XOUT_H | 0x80;
_spi->transaction(tx, rx, 15);
for (uint8_t i = 0; i < 7; i++) {
_sum[i] += (int16_t)(((uint16_t)rx[2*i+1] << 8) | rx[2*i+2]);
}
_count++;
if (_count == 0) {
// rollover - v unlikely
memset((void*)_sum, 0, sizeof(_sum));
}
// should also read FIFO data if enabled
if( _dmp_initialised ) {
if( FIFO_ready() ) {
FIFO_getPacket();
}
}
}
uint8_t AP_InertialSensor_MPU6000::_register_read( uint8_t reg )
{
uint8_t addr = reg | 0x80; // Set most significant bit
uint8_t tx[2];
uint8_t rx[2];
tx[0] = addr;
tx[1] = 0;
_spi->transaction(tx, rx, 2);
return rx[1];
}
void AP_InertialSensor_MPU6000::register_write(uint8_t reg, uint8_t val)
{
uint8_t tx[2];
uint8_t rx[2];
tx[0] = reg;
tx[1] = val;
_spi->transaction(tx, rx, 2);
}
bool AP_InertialSensor_MPU6000::hardware_init(Sample_rate sample_rate)
{
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("MPU6000: Unable to get semaphore"));
}
// Chip reset
uint8_t tries;
for (tries = 0; tries<5; tries++) {
register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
hal.scheduler->delay(100);
// Wake up device and select GyroZ clock. Note that the
// MPU6000 starts up in sleep mode, and it can take some time
// for it to come out of sleep
register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
hal.scheduler->delay(5);
// check it has woken up
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) {
break;
}
}
if (tries == 5) {
hal.console->println_P(PSTR("Failed to boot MPU6000 5 times"));
_spi_sem->give();
return false;
}
register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode
hal.scheduler->delay(1);
// Disable I2C bus (recommended on datasheet)
register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
hal.scheduler->delay(1);
uint8_t rate, filter, default_filter;
// sample rate and filtering
// to minimise the effects of aliasing we choose a filter
// that is less than half of the sample rate
switch (sample_rate) {
case RATE_50HZ:
rate = MPUREG_SMPLRT_50HZ;
default_filter = BITS_DLPF_CFG_20HZ;
_msec_per_sample = 20;
break;
case RATE_100HZ:
rate = MPUREG_SMPLRT_100HZ;
default_filter = BITS_DLPF_CFG_42HZ;
_msec_per_sample = 10;
break;
case RATE_200HZ:
default:
rate = MPUREG_SMPLRT_200HZ;
default_filter = BITS_DLPF_CFG_42HZ;
_msec_per_sample = 5;
break;
}
// choose filtering frequency
switch (_mpu6000_filter) {
case 5:
filter = BITS_DLPF_CFG_5HZ;
break;
case 10:
filter = BITS_DLPF_CFG_10HZ;
break;
case 20:
filter = BITS_DLPF_CFG_20HZ;
break;
case 42:
filter = BITS_DLPF_CFG_42HZ;
break;
case 98:
filter = BITS_DLPF_CFG_98HZ;
break;
case 0:
default:
// the user hasn't specified a specific frequency,
// use the default value for the given sample rate
filter = default_filter;
}
// set sample rate
register_write(MPUREG_SMPLRT_DIV, rate);
hal.scheduler->delay(1);
// set low pass filter
register_write(MPUREG_CONFIG, filter);
hal.scheduler->delay(1);
register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000º/s
hal.scheduler->delay(1);
// read the product ID rev c has 1/2 the sensitivity of rev d
_mpu6000_product_id = _register_read(MPUREG_PRODUCT_ID);
//Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id);
if ((_mpu6000_product_id == MPU6000ES_REV_C4) || (_mpu6000_product_id == MPU6000ES_REV_C5) ||
(_mpu6000_product_id == MPU6000_REV_C4) || (_mpu6000_product_id == MPU6000_REV_C5)) {
// Accel scale 8g (4096 LSB/g)
// Rev C has different scaling than rev D
register_write(MPUREG_ACCEL_CONFIG,1<<3);
} else {
// Accel scale 8g (4096 LSB/g)
register_write(MPUREG_ACCEL_CONFIG,2<<3);
}
hal.scheduler->delay(1);
// configure interrupt to fire when new data arrives
register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
hal.scheduler->delay(1);
// clear interrupt on any read, and hold the data ready pin high
// until we clear the interrupt
register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN);
hal.scheduler->delay(1);
_spi_sem->give();
return true;
}
float AP_InertialSensor_MPU6000::_temp_to_celsius ( uint16_t regval )
{
/* TODO */
return 20.0;
}
// return the MPU6k gyro drift rate in radian/s/s
// note that this is much better than the oilpan gyros
float AP_InertialSensor_MPU6000::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}
// get number of samples read from the sensors
uint16_t AP_InertialSensor_MPU6000::num_samples_available()
{
_poll_data(0);
return _count;
}
#if MPU6000_DEBUG
// dump all config registers - used for debug
void AP_InertialSensor_MPU6000::_dump_registers(void)
{
for (uint8_t reg=25; reg<=108; reg++) {
uint8_t v = _register_read(reg);
hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v);
if ((reg - 24) % 16 == 0) {
hal.console->println();
}
}
hal.console->println();
}
#endif
// get_delta_time returns the time period in seconds overwhich the sensor data was collected
float AP_InertialSensor_MPU6000::get_delta_time()
{
return _msec_per_sample * 0.001 * _num_samples;
}
// Update gyro offsets with new values. Offsets provided in as scaled deg/sec values
void AP_InertialSensor_MPU6000::push_gyro_offsets_to_dmp()
{
Vector3f gyro_offsets = _gyro_offset.get();
int16_t offsetX = gyro_offsets.x / _gyro_scale * _gyro_data_sign[0];
int16_t offsetY = gyro_offsets.y / _gyro_scale * _gyro_data_sign[1];
int16_t offsetZ = gyro_offsets.z / _gyro_scale * _gyro_data_sign[2];
set_dmp_gyro_offsets(offsetX, offsetY, offsetZ);
// remove ins level offsets to avoid double counting
gyro_offsets.x = 0;
gyro_offsets.y = 0;
gyro_offsets.z = 0;
_gyro_offset = gyro_offsets;
}
// Update gyro offsets with new values. New offset values are substracted to actual offset values.
// offset values in gyro LSB units (as read from registers)
void AP_InertialSensor_MPU6000::set_dmp_gyro_offsets(int16_t offsetX, int16_t offsetY, int16_t offsetZ)
{
int16_t aux_int;
if (offsetX != 0) {
// Read actual value
aux_int = (_register_read(MPUREG_XG_OFFS_USRH)<<8) | _register_read(MPUREG_XG_OFFS_USRL);
aux_int -= offsetX<<1; // Adjust to internal units
// Write to MPU registers
register_write(MPUREG_XG_OFFS_USRH, (aux_int>>8)&0xFF);
register_write(MPUREG_XG_OFFS_USRL, aux_int&0xFF);
}
if (offsetY != 0) {
aux_int = (_register_read(MPUREG_YG_OFFS_USRH)<<8) | _register_read(MPUREG_YG_OFFS_USRL);
aux_int -= offsetY<<1; // Adjust to internal units
// Write to MPU registers
register_write(MPUREG_YG_OFFS_USRH, (aux_int>>8)&0xFF);
register_write(MPUREG_YG_OFFS_USRL, aux_int&0xFF);
}
if (offsetZ != 0) {
aux_int = (_register_read(MPUREG_ZG_OFFS_USRH)<<8) | _register_read(MPUREG_ZG_OFFS_USRL);
aux_int -= offsetZ<<1; // Adjust to internal units
// Write to MPU registers
register_write(MPUREG_ZG_OFFS_USRH, (aux_int>>8)&0xFF);
register_write(MPUREG_ZG_OFFS_USRL, aux_int&0xFF);
}
}
// Update accel offsets with new values. Offsets provided in as scaled values (1G)
void AP_InertialSensor_MPU6000::push_accel_offsets_to_dmp()
{
Vector3f accel_offset = _accel_offset.get();
Vector3f accel_scale = _accel_scale.get();
int16_t offsetX = accel_offset.x / (accel_scale.x * _accel_data_sign[0] * MPU6000_ACCEL_SCALE_1G);
int16_t offsetY = accel_offset.y / (accel_scale.y * _accel_data_sign[1] * MPU6000_ACCEL_SCALE_1G);
int16_t offsetZ = accel_offset.z / (accel_scale.z * _accel_data_sign[2] * MPU6000_ACCEL_SCALE_1G);
// strangely x and y are reversed
set_dmp_accel_offsets(offsetY, offsetX, offsetZ);
}
// set_accel_offsets - adds an offset to acceleromter readings
// This is useful for dynamic acceleration correction (for example centripetal force correction)
// and for the initial offset calibration
// Input, accel offsets for X,Y and Z in LSB units (as read from raw values)
void AP_InertialSensor_MPU6000::set_dmp_accel_offsets(int16_t offsetX, int16_t offsetY, int16_t offsetZ)
{
int aux_int;
uint8_t regs[2];
// Write accel offsets to DMP memory...
// TO-DO: why don't we write to main accel offset registries? i.e. MPUREG_XA_OFFS_H
aux_int = offsetX>>1; // Transform to internal units
regs[0]=(aux_int>>8)&0xFF;
regs[1]=aux_int&0xFF;
dmp_register_write(0x01,0x08,2,regs); // key KEY_D_1_8 Accel X offset
aux_int = offsetY>>1;
regs[0]=(aux_int>>8)&0xFF;
regs[1]=aux_int&0xFF;
dmp_register_write(0x01,0x0A,2,regs); // key KEY_D_1_10 Accel Y offset
aux_int = offsetZ>>1;
regs[0]=(aux_int>>8)&0xFF;
regs[1]=aux_int&0xFF;
dmp_register_write(0x01,0x02,2,regs); // key KEY_D_1_2 Accel Z offset
}
// dmp_register_write - method to write to dmp's registers
// the dmp is logically separated from the main mpu6000. To write a block of memory to the DMP's memory you
// write the "bank" and starting address into two of the main MPU's registers, then write the data one byte
// at a time into the MPUREG_MEM_R_W register
void AP_InertialSensor_MPU6000::dmp_register_write(uint8_t bank, uint8_t address, uint8_t num_bytes, uint8_t data[])
{
register_write(MPUREG_BANK_SEL,bank);
register_write(MPUREG_MEM_START_ADDR,address);
_spi->cs_assert();
_spi->transfer(MPUREG_MEM_R_W);
for (uint8_t i=0; i<num_bytes; i++) {
_spi->transfer(data[i]);
}
_spi->cs_release();
}
// MPU6000 DMP initialization
// this should be called after hardware_init if you wish to enable the dmp
void AP_InertialSensor_MPU6000::dmp_init()
{
uint8_t regs[4]; // for writing to dmp
// ensure we only initialise once
if( _dmp_initialised ) {
return;
}
// load initial values into DMP memory
dmp_load_mem();
dmp_set_gyro_calibration();
dmp_set_accel_calibration();
dmp_apply_endian_accel();
dmp_set_mpu_sensors();
dmp_set_bias_none();
dmp_set_fifo_interrupt();
dmp_send_quaternion(); // By default we only send the quaternion to the FIFO (18 bytes packet size)
dmp_set_fifo_rate(MPU6000_200HZ); // 200Hz DMP output rate
register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN | BIT_DMP_INT_EN ); // configure interrupts to fire only when new data arrives from DMP (in fifo buffer)
// Randy: no idea what this does
register_write(MPUREG_DMP_CFG_1, 0x03); //MPUREG_DMP_CFG_1, 0x03
register_write(MPUREG_DMP_CFG_2, 0x00); //MPUREG_DMP_CFG_2, 0x00
//inv_state_change_fifo
regs[0] = 0xFF;
regs[1] = 0xFF;
dmp_register_write(0x01, 0xB2, 0x02, regs); // D_1_178
// ?? FIFO ??
regs[0] = 0x09;
regs[1] = 0x23;
regs[2] = 0xA1;
regs[3] = 0x35;
dmp_register_write(0x01, 0x90, 0x04, regs); // D_1_144
//register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET); //MPUREG_USER_CTRL, BIT_FIFO_RST
FIFO_reset();
FIFO_ready();
//register_write(MPUREG_USER_CTRL, 0x00); // MPUREG_USER_CTRL, 0. TO-DO: is all this setting of USER_CTRL really necessary?
register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET); //MPUREG_USER_CTRL, BIT_FIFO_RST. TO-DO: replace this call with FIFO_reset()?
register_write(MPUREG_USER_CTRL, 0x00); // MPUREG_USER_CTRL: 0
register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_DMP_EN | BIT_USER_CTRL_FIFO_EN | BIT_USER_CTRL_DMP_RESET);
// Set the gain of the accel in the sensor fusion
dmp_set_sensor_fusion_accel_gain(DEFAULT_ACCEL_FUSION_GAIN); // default value
// dmp initialisation complete
_dmp_initialised = true;
}
// dmp_reset - reset dmp (required for changes in gains or offsets to take effect)
void AP_InertialSensor_MPU6000::dmp_reset()
{
//uint8_t tmp = register_read(MPUREG_USER_CTRL);
//tmp |= BIT_USER_CTRL_DMP_RESET;
//register_write(MPUREG_USER_CTRL,tmp);
register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET); //MPUREG_USER_CTRL, BIT_FIFO_RST. TO-DO: replace this call with FIFO_reset()?
register_write(MPUREG_USER_CTRL, 0x00); // MPUREG_USER_CTRL: 0
register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_DMP_EN | BIT_USER_CTRL_FIFO_EN | BIT_USER_CTRL_DMP_RESET);
}
// New data packet in FIFO?
bool AP_InertialSensor_MPU6000::FIFO_ready()
{
_fifoCountH = _register_read(MPUREG_FIFO_COUNTH);
_fifoCountL = _register_read(MPUREG_FIFO_COUNTL);
if(_fifoCountL == FIFO_PACKET_SIZE) {
return 1;
}
else{
//We should not reach this point or maybe we have more than one packet (we should manage this!)
FIFO_reset();
return 0;
}
}
// FIFO_reset - reset/clear FIFO buffer used to capture attitude information from DMP
void AP_InertialSensor_MPU6000::FIFO_reset()
{
uint8_t temp;
temp = _register_read(MPUREG_USER_CTRL);
temp = temp | BIT_USER_CTRL_FIFO_RESET; // FIFO RESET BIT
register_write(MPUREG_USER_CTRL, temp);
}
// FIFO_getPacket - read an attitude packet from FIFO buffer
// TO-DO: interpret results instead of just dumping into a buffer
void AP_InertialSensor_MPU6000::FIFO_getPacket()
{
uint8_t i;
int16_t q_data[4];
uint8_t addr = MPUREG_FIFO_R_W | 0x80; // Set most significant bit to indicate a read
uint8_t received_packet[DMP_FIFO_BUFFER_SIZE]; // FIFO packet buffer
_spi->cs_assert();
_spi->transfer(addr); // send address we want to read from
for(i = 0; i < _fifoCountL; i++) {
received_packet[i] = _spi->transfer(0); // request value
}
_spi->cs_release();
// we are using 16 bits resolution
q_data[0] = (int16_t) ((((uint16_t) received_packet[0]) << 8) + ((uint16_t) received_packet[1]));
q_data[1] = (int16_t) ((((uint16_t) received_packet[4]) << 8) + ((uint16_t) received_packet[5]));
q_data[2] = (int16_t) ((((uint16_t) received_packet[8]) << 8) + ((uint16_t) received_packet[9]));
q_data[3] = (int16_t) ((((uint16_t) received_packet[12]) << 8) + ((uint16_t) received_packet[13]));
quaternion.q1 = ((float)q_data[0]) / 16384.0f; // convert from fixed point to float
quaternion.q2 = ((float)q_data[2]) / 16384.0f; // convert from fixed point to float
quaternion.q3 = ((float)q_data[1]) / 16384.0f; // convert from fixed point to float
quaternion.q4 = ((float)-q_data[3]) / 16384.0f; // convert from fixed point to float
}
// dmp_set_gyro_calibration - apply default gyro calibration FS=2000dps and default orientation
void AP_InertialSensor_MPU6000::dmp_set_gyro_calibration()
{
uint8_t regs[4];
regs[0]=0x4C;
regs[1]=0xCD;
regs[2]=0x6C;
dmp_register_write(0x03, 0x7B, 0x03, regs); //FCFG_1 inv_set_gyro_calibration
regs[0]=0x36;
regs[1]=0x56;
regs[2]=0x76;
dmp_register_write(0x03, 0xAB, 0x03, regs); //FCFG_3 inv_set_gyro_calibration
regs[0]=0x02;
regs[1]=0xCB;
regs[2]=0x47;
regs[3]=0xA2;
dmp_register_write(0x00, 0x68, 0x04, regs); //D_0_104 inv_set_gyro_calibration
regs[0]=0x00;
regs[1]=0x05;
regs[2]=0x8B;
regs[3]=0xC1;
dmp_register_write(0x02, 0x18, 0x04, regs); //D_0_24 inv_set_gyro_calibration
}
// dmp_set_accel_calibration - apply default accel calibration scale=8g and default orientation
void AP_InertialSensor_MPU6000::dmp_set_accel_calibration()
{
uint8_t regs[6];
regs[0]=0x00;
regs[1]=0x00;
regs[2]=0x00;
regs[3]=0x00;
dmp_register_write(0x01, 0x0C, 0x04, regs); //D_1_152 inv_set_accel_calibration
regs[0]=0x0C;
regs[1]=0xC9;
regs[2]=0x2C;
regs[3]=0x97;
regs[4]=0x97;
regs[5]=0x97;
dmp_register_write(0x03, 0x7F, 0x06, regs); //FCFG_2 inv_set_accel_calibration
regs[0]=0x26;
regs[1]=0x46;
regs[2]=0x66;
dmp_register_write(0x03, 0x89, 0x03, regs); //FCFG_7 inv_set_accel_calibration
// accel range, 0x20,0x00 => 2g, 0x10,0x00=>4g regs= (1073741824/accel_scale*65536)
//regs[0]=0x20; // 2g
regs[0]=0x08; // 8g
regs[1]=0x00;
dmp_register_write(0x00, 0x6C, 0x02, regs); //D_0_108 inv_set_accel_calibration
}
// dmp_apply_endian_accel - set byte order of accelerometer values?
void AP_InertialSensor_MPU6000::dmp_apply_endian_accel()
{
uint8_t regs[4];
regs[0]=0x00;
regs[1]=0x00;
regs[2]=0x40;
regs[3]=0x00;
dmp_register_write(0x01, 0xEC, 0x04, regs); //D_1_236 inv_apply_endian_accel
}
// dmp_set_mpu_sensors - to configure for SIX_AXIS output
void AP_InertialSensor_MPU6000::dmp_set_mpu_sensors()
{
uint8_t regs[6];
regs[0]=0x0C;
regs[1]=0xC9;
regs[2]=0x2C;
regs[3]=0x97;
regs[4]=0x97;
regs[5]=0x97;
dmp_register_write(0x03, 0x7F, 0x06, regs); //FCFG_2 inv_set_mpu_sensors(INV_SIX_AXIS_GYRO_ACCEL);
}
// dmp_set_bias_from_no_motion - turn on bias from no motion
void AP_InertialSensor_MPU6000::dmp_set_bias_from_no_motion()
{
uint8_t regs[4];
regs[0]=0x0D;
regs[1]=0x35;
regs[2]=0x5D;
dmp_register_write(0x04, 0x02, 0x03, regs); //CFG_MOTION_BIAS inv_turn_on_bias_from_no_motion
regs[0]=0x87;
regs[1]=0x2D;
regs[2]=0x35;
regs[3]=0x3D;
dmp_register_write(0x04, 0x09, 0x04, regs); //FCFG_5 inv_set_bias_update( INV_BIAS_FROM_NO_MOTION );
}
// dmp_set_bias_none - turn off internal bias correction (we will use this and we handle the gyro bias correction externally)
void AP_InertialSensor_MPU6000::dmp_set_bias_none()
{
uint8_t regs[4];
regs[0]=0x98;
regs[1]=0x98;
regs[2]=0x98;
dmp_register_write(0x04, 0x02, 0x03, regs); //CFG_MOTION_BIAS inv_turn_off_bias_from_no_motion
regs[0]=0x87;
regs[1]=0x2D;
regs[2]=0x35;
regs[3]=0x3D;
dmp_register_write(0x04, 0x09, 0x04, regs); //FCFG_5 inv_set_bias_update( INV_BIAS_FROM_NO_MOTION );
}
// dmp_set_fifo_interrupt
void AP_InertialSensor_MPU6000::dmp_set_fifo_interrupt()
{
uint8_t regs[1];
regs[0]=0xFE;
dmp_register_write(0x07, 0x86, 0x01, regs); //CFG_6 inv_set_fifo_interupt
}
// dmp_send_quaternion - send quaternion data to FIFO
void AP_InertialSensor_MPU6000::dmp_send_quaternion()
{
uint8_t regs[5];
regs[0]=0xF1;
regs[1]=0x20;
regs[2]=0x28;
regs[3]=0x30;
regs[4]=0x38;
dmp_register_write(0x07, 0x41, 0x05, regs); //CFG_8 inv_send_quaternion
regs[0]=0x30;
dmp_register_write(0x07, 0x7E, 0x01, regs); //CFG_16 inv_set_footer
}
// dmp_send_gyro - send gyro data to FIFO
void AP_InertialSensor_MPU6000::dmp_send_gyro()
{
uint8_t regs[4];
regs[0]=0xF1;
regs[1]=0x28;
regs[2]=0x30;
regs[3]=0x38;
dmp_register_write(0x07, 0x47, 0x04, regs); //CFG_9 inv_send_gyro
}
// dmp_send_accel - send accel data to FIFO
void AP_InertialSensor_MPU6000::dmp_send_accel()
{
uint8_t regs[54];
regs[0]=0xF1;
regs[1]=0x28;
regs[2]=0x30;
regs[3]=0x38;
dmp_register_write(0x07, 0x6C, 0x04, regs); //CFG_12 inv_send_accel
}
// This functions defines the rate at wich attitude data is send to FIFO
// Rate: 0 => SAMPLE_RATE(ex:200Hz), 1=> SAMPLE_RATE/2 (ex:100Hz), 2=> SAMPLE_RATE/3 (ex:66Hz)
// rate constant definitions in MPU6000.h
void AP_InertialSensor_MPU6000::dmp_set_fifo_rate(uint8_t rate)
{
uint8_t regs[2];
regs[0]=0x00;
regs[1]=rate;
dmp_register_write(0x02, 0x16, 0x02, regs); //D_0_22 inv_set_fifo_rate
}
// This function defines the weight of the accel on the sensor fusion
// default value is 0x80
// The official invensense name is inv_key_0_96 (??)
void AP_InertialSensor_MPU6000::dmp_set_sensor_fusion_accel_gain(uint8_t gain)
{
//inv_key_0_96
register_write(MPUREG_BANK_SEL,0x00);
register_write(MPUREG_MEM_START_ADDR, 0x60);
_spi->cs_assert();
_spi->transfer(MPUREG_MEM_R_W);
_spi->transfer(0x00);
_spi->transfer(gain); // Original : 0x80 To test: 0x40, 0x20 (too less)
_spi->transfer(0x00);
_spi->transfer(0x00);
_spi->cs_release();
}
// Load initial memory values into DMP memory banks
void AP_InertialSensor_MPU6000::dmp_load_mem()
{
for(int i = 0; i < 7; i++) {
register_write(MPUREG_BANK_SEL,i); //MPUREG_BANK_SEL
for(uint8_t j = 0; j < 16; j++) {
uint8_t start_addy = j * 0x10;
register_write(MPUREG_MEM_START_ADDR,start_addy);
_spi->cs_assert();
_spi->transfer(MPUREG_MEM_R_W);
for(int k = 0; k < 16; k++) {
uint8_t byteToSend = pgm_read_byte((const prog_char *)&(dmpMem[i][j][k]));
_spi->transfer((uint8_t) byteToSend);
}
_spi->cs_release();
}
}
register_write(MPUREG_BANK_SEL,7); //MPUREG_BANK_SEL
for(uint8_t j = 0; j < 8; j++) {
uint8_t start_addy = j * 0x10;
register_write(MPUREG_MEM_START_ADDR,start_addy);
_spi->cs_assert();
_spi->transfer(MPUREG_MEM_R_W);
for(int k = 0; k < 16; k++) {
uint8_t byteToSend = pgm_read_byte((const prog_char *)&(dmpMem[7][j][k]));
_spi->transfer((uint8_t) byteToSend);
}
_spi->cs_release();
}
register_write(MPUREG_MEM_START_ADDR,0x80);
_spi->cs_assert();
_spi->transfer(MPUREG_MEM_R_W);
for(int k = 0; k < 9; k++) {
uint8_t byteToSend = pgm_read_byte((const prog_char *)&(dmpMem[7][8][k]));
_spi->transfer((uint8_t) byteToSend);
}
_spi->cs_release();
}
// ========= DMP MEMORY ================================
const uint8_t dmpMem[8][16][16] PROGMEM = {
{
{
0xFB, 0x00, 0x00, 0x3E, 0x00, 0x0B, 0x00, 0x36, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x00
}
,
{
0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0xFA, 0x80, 0x00, 0x0B, 0x12, 0x82, 0x00, 0x01
}
,
{
0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x28, 0x00, 0x00, 0xFF, 0xFF, 0x45, 0x81, 0xFF, 0xFF, 0xFA, 0x72, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x03, 0xE8, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x7F, 0xFF, 0xFF, 0xFE, 0x80, 0x01
}
,
{
0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x3E, 0x03, 0x30, 0x40, 0x00, 0x00, 0x00, 0x02, 0xCA, 0xE3, 0x09, 0x3E, 0x80, 0x00, 0x00
}
,
{
0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00
}
,
{
0x41, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x2A, 0x00, 0x00, 0x16, 0x55, 0x00, 0x00, 0x21, 0x82
}
,
{
0xFD, 0x87, 0x26, 0x50, 0xFD, 0x80, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x05, 0x80, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00
}
,
{
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x6F, 0x00, 0x02, 0x65, 0x32, 0x00, 0x00, 0x5E, 0xC0
}
,
{
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0xFB, 0x8C, 0x6F, 0x5D, 0xFD, 0x5D, 0x08, 0xD9, 0x00, 0x7C, 0x73, 0x3B, 0x00, 0x6C, 0x12, 0xCC
}
,
{
0x32, 0x00, 0x13, 0x9D, 0x32, 0x00, 0xD0, 0xD6, 0x32, 0x00, 0x08, 0x00, 0x40, 0x00, 0x01, 0xF4
}
,
{
0xFF, 0xE6, 0x80, 0x79, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD0, 0xD6, 0x00, 0x00, 0x27, 0x10
}
}
,
{
{
0xFB, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0xFA, 0x36, 0xFF, 0xBC, 0x30, 0x8E, 0x00, 0x05, 0xFB, 0xF0, 0xFF, 0xD9, 0x5B, 0xC8
}
,
{
0xFF, 0xD0, 0x9A, 0xBE, 0x00, 0x00, 0x10, 0xA9, 0xFF, 0xF4, 0x1E, 0xB2, 0x00, 0xCE, 0xBB, 0xF7
}
,
{
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x02, 0x00, 0x02, 0x02, 0x00, 0x00, 0x0C
}
,
{
0xFF, 0xC2, 0x80, 0x00, 0x00, 0x01, 0x80, 0x00, 0x00, 0xCF, 0x80, 0x00, 0x40, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x14
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x03, 0x3F, 0x68, 0xB6, 0x79, 0x35, 0x28, 0xBC, 0xC6, 0x7E, 0xD1, 0x6C
}
,
{
0x80, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0xB2, 0x6A, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F, 0xF0, 0x00, 0x00, 0x00, 0x30
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x25, 0x4D, 0x00, 0x2F, 0x70, 0x6D, 0x00, 0x00, 0x05, 0xAE, 0x00, 0x0C, 0x02, 0xD0
}
}
,
{
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x01, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x01, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0xFF, 0xEF, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00
}
,
{
0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
,
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}
}
,
{
{
0xD8, 0xDC, 0xBA, 0xA2, 0xF1, 0xDE, 0xB2, 0xB8, 0xB4, 0xA8, 0x81, 0x91, 0xF7, 0x4A, 0x90, 0x7F
}
,
{
0x91, 0x6A, 0xF3, 0xF9, 0xDB, 0xA8, 0xF9, 0xB0, 0xBA, 0xA0, 0x80, 0xF2, 0xCE, 0x81, 0xF3, 0xC2
}
,
{
0xF1, 0xC1, 0xF2, 0xC3, 0xF3, 0xCC, 0xA2, 0xB2, 0x80, 0xF1, 0xC6, 0xD8, 0x80, 0xBA, 0xA7, 0xDF
}
,
{
0xDF, 0xDF, 0xF2, 0xA7, 0xC3, 0xCB, 0xC5, 0xB6, 0xF0, 0x87, 0xA2, 0x94, 0x24, 0x48, 0x70, 0x3C
}
,
{
0x95, 0x40, 0x68, 0x34, 0x58, 0x9B, 0x78, 0xA2, 0xF1, 0x83, 0x92, 0x2D, 0x55, 0x7D, 0xD8, 0xB1
}
,
{
0xB4, 0xB8, 0xA1, 0xD0, 0x91, 0x80, 0xF2, 0x70, 0xF3, 0x70, 0xF2, 0x7C, 0x80, 0xA8, 0xF1, 0x01
}
,
{
0xB0, 0x98, 0x87, 0xD9, 0x43, 0xD8, 0x86, 0xC9, 0x88, 0xBA, 0xA1, 0xF2, 0x0E, 0xB8, 0x97, 0x80
}
,
{
0xF1, 0xA9, 0xDF, 0xDF, 0xDF, 0xAA, 0xDF, 0xDF, 0xDF, 0xF2, 0xAA, 0xC5, 0xCD, 0xC7, 0xA9, 0x0C
}
,
{
0xC9, 0x2C, 0x97, 0x97, 0x97, 0x97, 0xF1, 0xA9, 0x89, 0x26, 0x46, 0x66, 0xB0, 0xB4, 0xBA, 0x80
}
,
{
0xAC, 0xDE, 0xF2, 0xCA, 0xF1, 0xB2, 0x8C, 0x02, 0xA9, 0xB6, 0x98, 0x00, 0x89, 0x0E, 0x16, 0x1E
}
,
{
0xB8, 0xA9, 0xB4, 0x99, 0x2C, 0x54, 0x7C, 0xB0, 0x8A, 0xA8, 0x96, 0x36, 0x56, 0x76, 0xF1, 0xB9
}
,
{
0xAF, 0xB4, 0xB0, 0x83, 0xC0, 0xB8, 0xA8, 0x97, 0x11, 0xB1, 0x8F, 0x98, 0xB9, 0xAF, 0xF0, 0x24
}
,
{
0x08, 0x44, 0x10, 0x64, 0x18, 0xF1, 0xA3, 0x29, 0x55, 0x7D, 0xAF, 0x83, 0xB5, 0x93, 0xAF, 0xF0
}
,
{
0x00, 0x28, 0x50, 0xF1, 0xA3, 0x86, 0x9F, 0x61, 0xA6, 0xDA, 0xDE, 0xDF, 0xD9, 0xFA, 0xA3, 0x86
}
,
{
0x96, 0xDB, 0x31, 0xA6, 0xD9, 0xF8, 0xDF, 0xBA, 0xA6, 0x8F, 0xC2, 0xC5, 0xC7, 0xB2, 0x8C, 0xC1
}
,
{
0xB8, 0xA2, 0xDF, 0xDF, 0xDF, 0xA3, 0xDF, 0xDF, 0xDF, 0xD8, 0xD8, 0xF1, 0xB8, 0xA8, 0xB2, 0x86
}
}
,
{
{
0xB4, 0x98, 0x0D, 0x35, 0x5D, 0xB8, 0xAA, 0x98, 0xB0, 0x87, 0x2D, 0x35, 0x3D, 0xB2, 0xB6, 0xBA
}
,
{
0xAF, 0x8C, 0x96, 0x19, 0x8F, 0x9F, 0xA7, 0x0E, 0x16, 0x1E, 0xB4, 0x9A, 0xB8, 0xAA, 0x87, 0x2C
}
,
{
0x54, 0x7C, 0xB9, 0xA3, 0xDE, 0xDF, 0xDF, 0xA3, 0xB1, 0x80, 0xF2, 0xC4, 0xCD, 0xC9, 0xF1, 0xB8
}
,
{
0xA9, 0xB4, 0x99, 0x83, 0x0D, 0x35, 0x5D, 0x89, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0xB5, 0x93, 0xA3
}
,
{
0x0E, 0x16, 0x1E, 0xA9, 0x2C, 0x54, 0x7C, 0xB8, 0xB4, 0xB0, 0xF1, 0x97, 0x83, 0xA8, 0x11, 0x84
}
,
{
0xA5, 0x09, 0x98, 0xA3, 0x83, 0xF0, 0xDA, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xD8, 0xF1, 0xA5
}
,
{
0x29, 0x55, 0x7D, 0xA5, 0x85, 0x95, 0x02, 0x1A, 0x2E, 0x3A, 0x56, 0x5A, 0x40, 0x48, 0xF9, 0xF3
}
,
{
0xA3, 0xD9, 0xF8, 0xF0, 0x98, 0x83, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0x97, 0x82, 0xA8, 0xF1
}
,
{
0x11, 0xF0, 0x98, 0xA2, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xDA, 0xF3, 0xDE, 0xD8, 0x83, 0xA5
}
,
{
0x94, 0x01, 0xD9, 0xA3, 0x02, 0xF1, 0xA2, 0xC3, 0xC5, 0xC7, 0xD8, 0xF1, 0x84, 0x92, 0xA2, 0x4D
}
,
{
0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9
}
,
{
0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0x93, 0xA3, 0x4D
}
,
{
0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9
}
,
{
0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0xA8, 0x8A, 0x9A
}
,
{
0xF0, 0x28, 0x50, 0x78, 0x9E, 0xF3, 0x88, 0x18, 0xF1, 0x9F, 0x1D, 0x98, 0xA8, 0xD9, 0x08, 0xD8
}
,
{
0xC8, 0x9F, 0x12, 0x9E, 0xF3, 0x15, 0xA8, 0xDA, 0x12, 0x10, 0xD8, 0xF1, 0xAF, 0xC8, 0x97, 0x87
}
}
,
{
{
0x34, 0xB5, 0xB9, 0x94, 0xA4, 0x21, 0xF3, 0xD9, 0x22, 0xD8, 0xF2, 0x2D, 0xF3, 0xD9, 0x2A, 0xD8
}
,
{
0xF2, 0x35, 0xF3, 0xD9, 0x32, 0xD8, 0x81, 0xA4, 0x60, 0x60, 0x61, 0xD9, 0x61, 0xD8, 0x6C, 0x68
}
,
{
0x69, 0xD9, 0x69, 0xD8, 0x74, 0x70, 0x71, 0xD9, 0x71, 0xD8, 0xB1, 0xA3, 0x84, 0x19, 0x3D, 0x5D
}
,
{
0xA3, 0x83, 0x1A, 0x3E, 0x5E, 0x93, 0x10, 0x30, 0x81, 0x10, 0x11, 0xB8, 0xB0, 0xAF, 0x8F, 0x94
}
,
{
0xF2, 0xDA, 0x3E, 0xD8, 0xB4, 0x9A, 0xA8, 0x87, 0x29, 0xDA, 0xF8, 0xD8, 0x87, 0x9A, 0x35, 0xDA
}
,
{
0xF8, 0xD8, 0x87, 0x9A, 0x3D, 0xDA, 0xF8, 0xD8, 0xB1, 0xB9, 0xA4, 0x98, 0x85, 0x02, 0x2E, 0x56
}
,
{
0xA5, 0x81, 0x00, 0x0C, 0x14, 0xA3, 0x97, 0xB0, 0x8A, 0xF1, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9
}
,
{
0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x84, 0x0D, 0xDA, 0x0E, 0xD8, 0xA3, 0x29, 0x83, 0xDA
}
,
{
0x2C, 0x0E, 0xD8, 0xA3, 0x84, 0x49, 0x83, 0xDA, 0x2C, 0x4C, 0x0E, 0xD8, 0xB8, 0xB0, 0xA8, 0x8A
}
,
{
0x9A, 0xF5, 0x20, 0xAA, 0xDA, 0xDF, 0xD8, 0xA8, 0x40, 0xAA, 0xD0, 0xDA, 0xDE, 0xD8, 0xA8, 0x60
}
,
{
0xAA, 0xDA, 0xD0, 0xDF, 0xD8, 0xF1, 0x97, 0x86, 0xA8, 0x31, 0x9B, 0x06, 0x99, 0x07, 0xAB, 0x97
}
,
{
0x28, 0x88, 0x9B, 0xF0, 0x0C, 0x20, 0x14, 0x40, 0xB8, 0xB0, 0xB4, 0xA8, 0x8C, 0x9C, 0xF0, 0x04
}
,
{
0x28, 0x51, 0x79, 0x1D, 0x30, 0x14, 0x38, 0xB2, 0x82, 0xAB, 0xD0, 0x98, 0x2C, 0x50, 0x50, 0x78
}
,
{
0x78, 0x9B, 0xF1, 0x1A, 0xB0, 0xF0, 0x8A, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x8B, 0x29, 0x51, 0x79
}
,
{
0x8A, 0x24, 0x70, 0x59, 0x8B, 0x20, 0x58, 0x71, 0x8A, 0x44, 0x69, 0x38, 0x8B, 0x39, 0x40, 0x68
}
,
{
0x8A, 0x64, 0x48, 0x31, 0x8B, 0x30, 0x49, 0x60, 0xA5, 0x88, 0x20, 0x09, 0x71, 0x58, 0x44, 0x68
}
}
,
{
{
0x11, 0x39, 0x64, 0x49, 0x30, 0x19, 0xF1, 0xAC, 0x00, 0x2C, 0x54, 0x7C, 0xF0, 0x8C, 0xA8, 0x04
}
,
{
0x28, 0x50, 0x78, 0xF1, 0x88, 0x97, 0x26, 0xA8, 0x59, 0x98, 0xAC, 0x8C, 0x02, 0x26, 0x46, 0x66
}
,
{
0xF0, 0x89, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x24, 0x70, 0x59, 0x44, 0x69, 0x38, 0x64, 0x48, 0x31
}
,
{
0xA9, 0x88, 0x09, 0x20, 0x59, 0x70, 0xAB, 0x11, 0x38, 0x40, 0x69, 0xA8, 0x19, 0x31, 0x48, 0x60
}
,
{
0x8C, 0xA8, 0x3C, 0x41, 0x5C, 0x20, 0x7C, 0x00, 0xF1, 0x87, 0x98, 0x19, 0x86, 0xA8, 0x6E, 0x76
}
,
{
0x7E, 0xA9, 0x99, 0x88, 0x2D, 0x55, 0x7D, 0x9E, 0xB9, 0xA3, 0x8A, 0x22, 0x8A, 0x6E, 0x8A, 0x56
}
,
{
0x8A, 0x5E, 0x9F, 0xB1, 0x83, 0x06, 0x26, 0x46, 0x66, 0x0E, 0x2E, 0x4E, 0x6E, 0x9D, 0xB8, 0xAD
}
,
{
0x00, 0x2C, 0x54, 0x7C, 0xF2, 0xB1, 0x8C, 0xB4, 0x99, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0x81, 0x91
}
,
{
0xAC, 0x38, 0xAD, 0x3A, 0xB5, 0x83, 0x91, 0xAC, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8
}
,
{
0x6D, 0xD9, 0x68, 0xD8, 0x8C, 0x9D, 0xAE, 0x29, 0xD9, 0x04, 0xAE, 0xD8, 0x51, 0xD9, 0x04, 0xAE
}
,
{
0xD8, 0x79, 0xD9, 0x04, 0xD8, 0x81, 0xF3, 0x9D, 0xAD, 0x00, 0x8D, 0xAE, 0x19, 0x81, 0xAD, 0xD9
}
,
{
0x01, 0xD8, 0xF2, 0xAE, 0xDA, 0x26, 0xD8, 0x8E, 0x91, 0x29, 0x83, 0xA7, 0xD9, 0xAD, 0xAD, 0xAD
}
,
{
0xAD, 0xF3, 0x2A, 0xD8, 0xD8, 0xF1, 0xB0, 0xAC, 0x89, 0x91, 0x3E, 0x5E, 0x76, 0xF3, 0xAC, 0x2E
}
,
{
0x2E, 0xF1, 0xB1, 0x8C, 0x5A, 0x9C, 0xAC, 0x2C, 0x28, 0x28, 0x28, 0x9C, 0xAC, 0x30, 0x18, 0xA8
}
,
{
0x98, 0x81, 0x28, 0x34, 0x3C, 0x97, 0x24, 0xA7, 0x28, 0x34, 0x3C, 0x9C, 0x24, 0xF2, 0xB0, 0x89
}
,
{
0xAC, 0x91, 0x2C, 0x4C, 0x6C, 0x8A, 0x9B, 0x2D, 0xD9, 0xD8, 0xD8, 0x51, 0xD9, 0xD8, 0xD8, 0x79
}
}
,
{
{
0xD9, 0xD8, 0xD8, 0xF1, 0x9E, 0x88, 0xA3, 0x31, 0xDA, 0xD8, 0xD8, 0x91, 0x2D, 0xD9, 0x28, 0xD8
}
,
{
0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x83, 0x93, 0x35, 0x3D, 0x80, 0x25, 0xDA
}
,
{
0xD8, 0xD8, 0x85, 0x69, 0xDA, 0xD8, 0xD8, 0xB4, 0x93, 0x81, 0xA3, 0x28, 0x34, 0x3C, 0xF3, 0xAB
}
,
{
0x8B, 0xF8, 0xA3, 0x91, 0xB6, 0x09, 0xB4, 0xD9, 0xAB, 0xDE, 0xFA, 0xB0, 0x87, 0x9C, 0xB9, 0xA3
}
,
{
0xDD, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x95, 0xF1, 0xA3, 0xA3, 0xA3, 0x9D, 0xF1, 0xA3, 0xA3, 0xA3
}
,
{
0xA3, 0xF2, 0xA3, 0xB4, 0x90, 0x80, 0xF2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3
}
,
{
0xA3, 0xB2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xB0, 0x87, 0xB5, 0x99, 0xF1, 0xA3, 0xA3, 0xA3
}
,
{
0x98, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x97, 0xA3, 0xA3, 0xA3, 0xA3, 0xF3, 0x9B, 0xA3, 0xA3, 0xDC
}
,
{
0xB9, 0xA7, 0xF1, 0x26, 0x26, 0x26, 0xD8, 0xD8, 0xFF
}
}
};