mirror of https://github.com/ArduPilot/ardupilot
327 lines
13 KiB
C++
327 lines
13 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
control code for tailsitters. Enabled by setting Q_FRAME_CLASS=10
|
|
or by setting Q_TAILSIT_MOTMX nonzero and Q_FRAME_CLASS and Q_FRAME_TYPE
|
|
to a configuration supported by AP_MotorsMatrix
|
|
*/
|
|
|
|
#include "Plane.h"
|
|
|
|
/*
|
|
return true when flying a tailsitter
|
|
*/
|
|
bool QuadPlane::is_tailsitter(void) const
|
|
{
|
|
return available() && ((frame_class == AP_Motors::MOTOR_FRAME_TAILSITTER) ||
|
|
(tailsitter.motor_mask != 0));
|
|
}
|
|
|
|
/*
|
|
check if we are flying as a tailsitter
|
|
*/
|
|
bool QuadPlane::tailsitter_active(void)
|
|
{
|
|
if (!is_tailsitter()) {
|
|
return false;
|
|
}
|
|
if (in_vtol_mode()) {
|
|
return true;
|
|
}
|
|
// check if we are in ANGLE_WAIT fixed wing transition
|
|
if (transition_state == TRANSITION_ANGLE_WAIT_FW) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
run output for tailsitters
|
|
*/
|
|
void QuadPlane::tailsitter_output(void)
|
|
{
|
|
if (!is_tailsitter()) {
|
|
return;
|
|
}
|
|
|
|
float tilt_left = 0.0f;
|
|
float tilt_right = 0.0f;
|
|
uint16_t mask = tailsitter.motor_mask;
|
|
|
|
// handle forward flight modes and transition to VTOL modes
|
|
if (!tailsitter_active() || in_tailsitter_vtol_transition()) {
|
|
// in forward flight: set motor tilt servos and throttles using FW controller
|
|
if (tailsitter.vectored_forward_gain > 0) {
|
|
// thrust vectoring in fixed wing flight
|
|
float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
|
|
float elevator = SRV_Channels::get_output_scaled(SRV_Channel::k_elevator);
|
|
tilt_left = (elevator + aileron) * tailsitter.vectored_forward_gain;
|
|
tilt_right = (elevator - aileron) * tailsitter.vectored_forward_gain;
|
|
}
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right);
|
|
|
|
// get FW controller throttle demand and mask of motors enabled during forward flight
|
|
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
|
|
if (hal.util->get_soft_armed()) {
|
|
if (in_tailsitter_vtol_transition() && !throttle_wait && is_flying()) {
|
|
/*
|
|
during transitions to vtol mode set the throttle to
|
|
hover thrust, center the rudder and set the altitude controller
|
|
integrator to the same throttle level
|
|
*/
|
|
throttle = motors->get_throttle_hover() * 100;
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0);
|
|
pos_control->get_accel_z_pid().set_integrator(throttle*10);
|
|
|
|
if (mask == 0) {
|
|
// override AP_MotorsTailsitter throttles during back transition
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle);
|
|
}
|
|
}
|
|
if (mask != 0) {
|
|
// set AP_MotorsMatrix throttles enabled for forward flight
|
|
motors->output_motor_mask(throttle * 0.01f, mask, plane.rudder_dt);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// handle VTOL modes
|
|
// the MultiCopter rate controller has already been run in an earlier call
|
|
// to motors_output() from quadplane.update()
|
|
motors_output(false);
|
|
plane.pitchController.reset_I();
|
|
plane.rollController.reset_I();
|
|
|
|
// pull in copter control outputs
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, (motors->get_yaw())*-SERVO_MAX);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, (motors->get_pitch())*SERVO_MAX);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, (motors->get_roll())*SERVO_MAX);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, (motors->get_throttle()) * 100);
|
|
|
|
if (hal.util->get_soft_armed()) {
|
|
// scale surfaces for throttle
|
|
tailsitter_speed_scaling();
|
|
}
|
|
|
|
if (tailsitter.vectored_hover_gain > 0) {
|
|
// thrust vectoring VTOL modes
|
|
tilt_left = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorLeft);
|
|
tilt_right = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorRight);
|
|
/*
|
|
apply extra elevator when at high pitch errors, using a
|
|
power law. This allows the motors to point straight up for
|
|
takeoff without integrator windup
|
|
*/
|
|
int32_t pitch_error_cd = (plane.nav_pitch_cd - ahrs_view->pitch_sensor) * 0.5;
|
|
float extra_pitch = constrain_float(pitch_error_cd, -SERVO_MAX, SERVO_MAX) / SERVO_MAX;
|
|
float extra_sign = extra_pitch > 0?1:-1;
|
|
float extra_elevator = extra_sign * powf(fabsf(extra_pitch), tailsitter.vectored_hover_power) * SERVO_MAX;
|
|
tilt_left = extra_elevator + tilt_left * tailsitter.vectored_hover_gain;
|
|
tilt_right = extra_elevator + tilt_right * tailsitter.vectored_hover_gain;
|
|
if (fabsf(tilt_left) >= SERVO_MAX || fabsf(tilt_right) >= SERVO_MAX) {
|
|
// prevent integrator windup
|
|
motors->limit.roll_pitch = 1;
|
|
motors->limit.yaw = 1;
|
|
}
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right);
|
|
}
|
|
|
|
|
|
if (tailsitter.input_mask_chan > 0 &&
|
|
tailsitter.input_mask > 0 &&
|
|
RC_Channels::get_radio_in(tailsitter.input_mask_chan-1) > 1700) {
|
|
// the user is learning to prop-hang
|
|
if (tailsitter.input_mask & TAILSITTER_MASK_AILERON) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.channel_roll->get_control_in_zero_dz());
|
|
}
|
|
if (tailsitter.input_mask & TAILSITTER_MASK_ELEVATOR) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, plane.channel_pitch->get_control_in_zero_dz());
|
|
}
|
|
if (tailsitter.input_mask & TAILSITTER_MASK_THROTTLE) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.get_throttle_input(true));
|
|
}
|
|
if (tailsitter.input_mask & TAILSITTER_MASK_RUDDER) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, plane.channel_rudder->get_control_in_zero_dz());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
return true when we have completed enough of a transition to switch to fixed wing control
|
|
*/
|
|
bool QuadPlane::tailsitter_transition_fw_complete(void)
|
|
{
|
|
if (plane.fly_inverted()) {
|
|
// transition immediately
|
|
return true;
|
|
}
|
|
int32_t roll_cd = labs(ahrs_view->roll_sensor);
|
|
if (roll_cd > 9000) {
|
|
roll_cd = 18000 - roll_cd;
|
|
}
|
|
if (labs(ahrs_view->pitch_sensor) > tailsitter.transition_angle*100 ||
|
|
roll_cd > tailsitter.transition_angle*100 ||
|
|
AP_HAL::millis() - transition_start_ms > uint32_t(transition_time_ms)) {
|
|
return true;
|
|
}
|
|
// still waiting
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
return true when we have completed enough of a transition to switch to VTOL control
|
|
*/
|
|
bool QuadPlane::tailsitter_transition_vtol_complete(void) const
|
|
{
|
|
if (plane.fly_inverted()) {
|
|
// transition immediately
|
|
return true;
|
|
}
|
|
if (labs(plane.ahrs.pitch_sensor) > tailsitter.transition_angle*100 ||
|
|
labs(plane.ahrs.roll_sensor) > tailsitter.transition_angle*100 ||
|
|
AP_HAL::millis() - transition_start_ms > 2000) {
|
|
return true;
|
|
}
|
|
// still waiting
|
|
attitude_control->reset_rate_controller_I_terms();
|
|
return false;
|
|
}
|
|
|
|
// handle different tailsitter input types
|
|
void QuadPlane::tailsitter_check_input(void)
|
|
{
|
|
if (tailsitter_active() &&
|
|
(tailsitter.input_type == TAILSITTER_INPUT_BF_ROLL ||
|
|
tailsitter.input_type == TAILSITTER_INPUT_PLANE)) {
|
|
// the user has asked for body frame controls when tailsitter
|
|
// is active. We switch around the control_in value for the
|
|
// channels to do this, as that ensures the value is
|
|
// consistent throughout the code
|
|
int16_t roll_in = plane.channel_roll->get_control_in();
|
|
int16_t yaw_in = plane.channel_rudder->get_control_in();
|
|
plane.channel_roll->set_control_in(yaw_in);
|
|
plane.channel_rudder->set_control_in(-roll_in);
|
|
}
|
|
}
|
|
|
|
/*
|
|
return true if we are a tailsitter transitioning to VTOL flight
|
|
*/
|
|
bool QuadPlane::in_tailsitter_vtol_transition(void) const
|
|
{
|
|
return is_tailsitter() && in_vtol_mode() && transition_state == TRANSITION_ANGLE_WAIT_VTOL;
|
|
}
|
|
|
|
/*
|
|
account for speed scaling of control surfaces in VTOL modes
|
|
*/
|
|
void QuadPlane::tailsitter_speed_scaling(void)
|
|
{
|
|
const float hover_throttle = motors->get_throttle_hover();
|
|
const float throttle = motors->get_throttle();
|
|
float spd_scaler = 1;
|
|
|
|
// If throttle_scale_max is > 1, boost gains at low throttle
|
|
if (tailsitter.throttle_scale_max > 1) {
|
|
if (is_zero(throttle)) {
|
|
spd_scaler = tailsitter.throttle_scale_max;
|
|
} else {
|
|
spd_scaler = constrain_float(hover_throttle / throttle, 0, tailsitter.throttle_scale_max);
|
|
}
|
|
} else {
|
|
// reduce gains when flying at high speed in Q modes:
|
|
|
|
// critical parameter: violent oscillations if too high
|
|
// sudden loss of attitude control if too low
|
|
constexpr float max_atten = 0.2f;
|
|
float tthr = 1.25f * hover_throttle;
|
|
float aspeed;
|
|
bool airspeed_enabled = ahrs.airspeed_sensor_enabled();
|
|
|
|
// If there is an airspeed sensor use the measured airspeed
|
|
// The airspeed estimate based only on GPS and (estimated) wind is
|
|
// not sufficiently accurate for tailsitters.
|
|
// (based on tests in RealFlight 8 with 10kph wind)
|
|
if (airspeed_enabled && ahrs.airspeed_estimate(&aspeed)) {
|
|
// plane.get_speed_scaler() doesn't work well for copter tailsitters
|
|
// ramp down from 1 to max_atten as speed increases to airspeed_max
|
|
spd_scaler = constrain_float(1 - (aspeed / plane.aparm.airspeed_max), max_atten, 1.0f);
|
|
} else {
|
|
// if no airspeed sensor reduce control surface throws at large tilt
|
|
// angles (assuming high airspeed)
|
|
|
|
// ramp down from 1 to max_atten at tilt angles over trans_angle
|
|
// (angles here are represented by their cosines)
|
|
constexpr float c_trans_angle = cosf(.125f * M_PI);
|
|
constexpr float alpha = (1 - max_atten) / (c_trans_angle - cosf(radians(90)));
|
|
constexpr float beta = 1 - alpha * c_trans_angle;
|
|
const float c_tilt = ahrs_view->get_rotation_body_to_ned().c.z;
|
|
if (c_tilt < c_trans_angle) {
|
|
spd_scaler = constrain_float(beta + alpha * c_tilt, max_atten, 1.0f);
|
|
// reduce throttle attenuation threshold too
|
|
tthr = 0.5f * hover_throttle;
|
|
}
|
|
}
|
|
// if throttle is above hover thrust, apply additional attenuation
|
|
if (throttle > tthr) {
|
|
const float throttle_atten = 1 - (throttle - tthr) / (1 - tthr);
|
|
spd_scaler *= throttle_atten;
|
|
spd_scaler = constrain_float(spd_scaler, max_atten, 1.0f);
|
|
}
|
|
}
|
|
// limit positive and negative slew rates of applied speed scaling
|
|
constexpr float posTC = 5.0f; // seconds
|
|
constexpr float negTC = 2.0f; // seconds
|
|
const float posdelta = plane.G_Dt / posTC;
|
|
const float negdelta = plane.G_Dt / negTC;
|
|
static float last_scale = 0;
|
|
static float scale = 0;
|
|
if ((spd_scaler - last_scale) > 0) {
|
|
if ((spd_scaler - last_scale) > posdelta) {
|
|
scale += posdelta;
|
|
} else {
|
|
scale = spd_scaler;
|
|
}
|
|
} else {
|
|
if ((spd_scaler - last_scale) < -negdelta) {
|
|
scale -= negdelta;
|
|
} else {
|
|
scale = spd_scaler;
|
|
}
|
|
}
|
|
last_scale = scale;
|
|
|
|
const SRV_Channel::Aux_servo_function_t functions[5] = {
|
|
SRV_Channel::Aux_servo_function_t::k_aileron,
|
|
SRV_Channel::Aux_servo_function_t::k_elevator,
|
|
SRV_Channel::Aux_servo_function_t::k_rudder,
|
|
SRV_Channel::Aux_servo_function_t::k_tiltMotorLeft,
|
|
SRV_Channel::Aux_servo_function_t::k_tiltMotorRight};
|
|
for (uint8_t i=0; i<ARRAY_SIZE(functions); i++) {
|
|
int32_t v = SRV_Channels::get_output_scaled(functions[i]);
|
|
v *= scale;
|
|
v = constrain_int32(v, -SERVO_MAX, SERVO_MAX);
|
|
SRV_Channels::set_output_scaled(functions[i], v);
|
|
}
|
|
}
|
|
|