ardupilot/APMrover2/mode_acro.cpp

59 lines
2.3 KiB
C++

#include "mode.h"
#include "Rover.h"
void ModeAcro::update()
{
// get speed forward
float speed, desired_steering;
if (!attitude_control.get_forward_speed(speed)) {
float desired_throttle;
// convert pilot stick input into desired steering and throttle
get_pilot_desired_steering_and_throttle(desired_steering, desired_throttle);
// no valid speed, just use the provided throttle
g2.motors.set_throttle(desired_throttle);
} else {
float desired_speed;
// convert pilot stick input into desired steering and speed
get_pilot_desired_steering_and_speed(desired_steering, desired_speed);
calc_throttle(desired_speed, false, true);
}
float steering_out;
// handle sailboats
if (!is_zero(desired_steering)) {
// steering input return control to user
rover.sailboat_clear_tack();
}
if (g2.motors.has_sail() && rover.sailboat_tacking()) {
// call heading controller during tacking
steering_out = attitude_control.get_steering_out_heading(rover.sailboat_get_tack_heading_rad(),
g2.pivot_turn_rate,
g2.motors.limit.steer_left,
g2.motors.limit.steer_right,
rover.G_Dt);
} else {
// convert pilot steering input to desired turn rate in radians/sec
const float target_turn_rate = (desired_steering / 4500.0f) * radians(g2.acro_turn_rate);
// run steering turn rate controller and throttle controller
steering_out = attitude_control.get_steering_out_rate(target_turn_rate,
g2.motors.limit.steer_left,
g2.motors.limit.steer_right,
rover.G_Dt);
}
g2.motors.set_steering(steering_out * 4500.0f);
}
bool ModeAcro::requires_velocity() const
{
return g2.motors.have_skid_steering()? false: true;
}
// sailboats in acro mode support user manually initiating tacking from transmitter
void ModeAcro::handle_tack_request()
{
rover.sailboat_handle_tack_request_acro();
}