ardupilot/libraries/AP_Proximity/AP_Proximity_Scripting.cpp

128 lines
4.2 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Proximity_Scripting.h"
#if HAL_PROXIMITY_ENABLED && AP_SCRIPTING_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <ctype.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
#define PROXIMITY_SCRIPTING_TIMEOUT_MS 1500 // distance messages must arrive within this many milliseconds
// update the state of the sensor
void AP_Proximity_Scripting::update(void)
{
// check for timeout and set health status
if ((_last_update_ms == 0 || (AP_HAL::millis() - _last_update_ms > PROXIMITY_SCRIPTING_TIMEOUT_MS)) &&
(_last_upward_update_ms == 0 || (AP_HAL::millis() - _last_upward_update_ms > PROXIMITY_SCRIPTING_TIMEOUT_MS))) {
set_status(AP_Proximity::Status::NoData);
} else {
set_status(AP_Proximity::Status::Good);
}
}
// Set max and min range of the sensor. Only needs to be set once
bool AP_Proximity_Scripting::set_distance_min_max(float min, float max)
{
if (min >= max) {
return false;
}
_distance_min = min;
_distance_max = max;
return true;
}
// get distance upwards in meters. returns true on success
bool AP_Proximity_Scripting::get_upward_distance(float &distance) const
{
if ((_last_upward_update_ms != 0) && (AP_HAL::millis() - _last_upward_update_ms <= PROXIMITY_SCRIPTING_TIMEOUT_MS)) {
distance = _distance_upward;
return true;
}
return false;
}
// handle script distance messages
bool AP_Proximity_Scripting::handle_script_distance_msg(float dist_m, float yaw_deg, float pitch_deg, bool push_to_boundary)
{
_last_update_ms = AP_HAL::millis();
Vector3f current_pos;
Matrix3f body_to_ned;
const bool database_ready = database_prepare_for_push(current_pos, body_to_ned);
if (dist_m < distance_min() || dist_m > distance_max() || is_zero(dist_m)) {
// message isn't healthy
return false;
}
// store upward distance
if (is_equal(pitch_deg, 90.f)) {
_distance_upward = dist_m;
_last_upward_update_ms = _last_update_ms;
return true;
}
yaw_deg = correct_angle_for_orientation(yaw_deg);
if (ignore_reading(pitch_deg, yaw_deg, dist_m, false)) {
// obstacle is probably near ground or out of range
return false;
}
// allot to correct layer and sector based on calculated pitch and yaw
const AP_Proximity_Boundary_3D::Face face = frontend.boundary.get_face(pitch_deg, yaw_deg);
// add to temp boundary
temp_boundary.add_distance(face, pitch_deg, yaw_deg, dist_m);
if (push_to_boundary) {
temp_boundary.update_3D_boundary(state.instance, frontend.boundary);
temp_boundary.reset();
}
if (database_ready) {
database_push(yaw_deg, pitch_deg, dist_m, _last_update_ms, current_pos, body_to_ned);
}
return true;
}
// handle script vector messages
bool AP_Proximity_Scripting::handle_script_3d_msg(const Vector3f &vec_to_obstacle, bool push_to_boundary)
{
// convert to FRU
const Vector3f obstacle(vec_to_obstacle.x, vec_to_obstacle.y, vec_to_obstacle.z * -1.0f);
// extract yaw and pitch from Obstacle Vector
const float yaw = wrap_360(degrees(atan2f(obstacle.y, obstacle.x)));
const float pitch = wrap_180(degrees(M_PI_2 - atan2f(obstacle.xy().length(), obstacle.z)));
// now simply handle as a distance msg
return handle_script_distance_msg(obstacle.length(), yaw, pitch, push_to_boundary);
}
// update the temporary (buffer) boundary
bool AP_Proximity_Scripting::update_virtual_boundary()
{
temp_boundary.update_3D_boundary(state.instance, frontend.boundary);
temp_boundary.reset();
return true;
}
#endif // HAL_PROXIMITY_ENABLED && AP_SCRIPTING_ENABLED