ardupilot/ArduCopter/control_acro.cpp
Randy Mackay 7150dfd5f2 Copter: sport and acro trainer limits based on target attitude
previously the trainer used the vehicle's actual attitude meaning that the target could get far past the limits if there was an attitude error
2017-05-25 11:29:16 +09:00

169 lines
6.8 KiB
C++

#include "Copter.h"
/*
* Init and run calls for acro flight mode
*/
// acro_init - initialise acro controller
bool Copter::acro_init(bool ignore_checks)
{
// if landed and the mode we're switching from does not have manual throttle and the throttle stick is too high
if (motors->armed() && ap.land_complete && !mode_has_manual_throttle(control_mode) &&
(get_pilot_desired_throttle(channel_throttle->get_control_in(), g2.acro_thr_mid) > get_non_takeoff_throttle())) {
return false;
}
// set target altitude to zero for reporting
pos_control->set_alt_target(0);
return true;
}
// acro_run - runs the acro controller
// should be called at 100hz or more
void Copter::acro_run()
{
float target_roll, target_pitch, target_yaw;
float pilot_throttle_scaled;
// if not armed set throttle to zero and exit immediately
if (!motors->armed() || ap.throttle_zero || !motors->get_interlock()) {
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
return;
}
// clear landing flag
set_land_complete(false);
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// convert the input to the desired body frame rate
get_pilot_desired_angle_rates(channel_roll->get_control_in(), channel_pitch->get_control_in(), channel_yaw->get_control_in(), target_roll, target_pitch, target_yaw);
// get pilot's desired throttle
pilot_throttle_scaled = get_pilot_desired_throttle(channel_throttle->get_control_in(), g2.acro_thr_mid);
// run attitude controller
attitude_control->input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw);
// output pilot's throttle without angle boost
attitude_control->set_throttle_out(pilot_throttle_scaled, false, g.throttle_filt);
}
// get_pilot_desired_angle_rates - transform pilot's roll pitch and yaw input into a desired lean angle rates
// returns desired angle rates in centi-degrees-per-second
void Copter::get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out)
{
float rate_limit;
Vector3f rate_ef_level, rate_bf_level, rate_bf_request;
// apply circular limit to pitch and roll inputs
float total_in = norm(pitch_in, roll_in);
if (total_in > ROLL_PITCH_YAW_INPUT_MAX) {
float ratio = (float)ROLL_PITCH_YAW_INPUT_MAX / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// calculate roll, pitch rate requests
if (g.acro_rp_expo <= 0) {
rate_bf_request.x = roll_in * g.acro_rp_p;
rate_bf_request.y = pitch_in * g.acro_rp_p;
} else {
// expo variables
float rp_in, rp_in3, rp_out;
// range check expo
if (g.acro_rp_expo > 1.0f) {
g.acro_rp_expo = 1.0f;
}
// roll expo
rp_in = float(roll_in)/ROLL_PITCH_YAW_INPUT_MAX;
rp_in3 = rp_in*rp_in*rp_in;
rp_out = (g.acro_rp_expo * rp_in3) + ((1.0f - g.acro_rp_expo) * rp_in);
rate_bf_request.x = ROLL_PITCH_YAW_INPUT_MAX * rp_out * g.acro_rp_p;
// pitch expo
rp_in = float(pitch_in)/ROLL_PITCH_YAW_INPUT_MAX;
rp_in3 = rp_in*rp_in*rp_in;
rp_out = (g.acro_rp_expo * rp_in3) + ((1.0f - g.acro_rp_expo) * rp_in);
rate_bf_request.y = ROLL_PITCH_YAW_INPUT_MAX * rp_out * g.acro_rp_p;
}
// calculate yaw rate request
rate_bf_request.z = get_pilot_desired_yaw_rate(yaw_in);
// calculate earth frame rate corrections to pull the copter back to level while in ACRO mode
if (g.acro_trainer != ACRO_TRAINER_DISABLED) {
// get attitude targets
const Vector3f att_target = attitude_control->get_att_target_euler_cd();
// Calculate trainer mode earth frame rate command for roll
int32_t roll_angle = wrap_180_cd(att_target.x);
rate_ef_level.x = -constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll;
// Calculate trainer mode earth frame rate command for pitch
int32_t pitch_angle = wrap_180_cd(att_target.y);
rate_ef_level.y = -constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch;
// Calculate trainer mode earth frame rate command for yaw
rate_ef_level.z = 0;
// Calculate angle limiting earth frame rate commands
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
if (roll_angle > aparm.angle_max){
rate_ef_level.x -= g.acro_balance_roll*(roll_angle-aparm.angle_max);
}else if (roll_angle < -aparm.angle_max) {
rate_ef_level.x -= g.acro_balance_roll*(roll_angle+aparm.angle_max);
}
if (pitch_angle > aparm.angle_max){
rate_ef_level.y -= g.acro_balance_pitch*(pitch_angle-aparm.angle_max);
}else if (pitch_angle < -aparm.angle_max) {
rate_ef_level.y -= g.acro_balance_pitch*(pitch_angle+aparm.angle_max);
}
}
// convert earth-frame level rates to body-frame level rates
attitude_control->euler_rate_to_ang_vel(attitude_control->get_att_target_euler_cd()*radians(0.01f), rate_ef_level, rate_bf_level);
// combine earth frame rate corrections with rate requests
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
rate_bf_request.x += rate_bf_level.x;
rate_bf_request.y += rate_bf_level.y;
rate_bf_request.z += rate_bf_level.z;
}else{
float acro_level_mix = constrain_float(1-MAX(MAX(abs(roll_in), abs(pitch_in)), abs(yaw_in))/4500.0, 0, 1)*ahrs.cos_pitch();
// Scale leveling rates by stick input
rate_bf_level = rate_bf_level*acro_level_mix;
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabsf(fabsf(rate_bf_request.x)-fabsf(rate_bf_level.x));
rate_bf_request.x += rate_bf_level.x;
rate_bf_request.x = constrain_float(rate_bf_request.x, -rate_limit, rate_limit);
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabsf(fabsf(rate_bf_request.y)-fabsf(rate_bf_level.y));
rate_bf_request.y += rate_bf_level.y;
rate_bf_request.y = constrain_float(rate_bf_request.y, -rate_limit, rate_limit);
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabsf(fabsf(rate_bf_request.z)-fabsf(rate_bf_level.z));
rate_bf_request.z += rate_bf_level.z;
rate_bf_request.z = constrain_float(rate_bf_request.z, -rate_limit, rate_limit);
}
}
// hand back rate request
roll_out = rate_bf_request.x;
pitch_out = rate_bf_request.y;
yaw_out = rate_bf_request.z;
}