mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 07:08:29 -04:00
873e6c8e29
As the previous commit as doubled the number of reads required to confirm that the mode change switch has been changed this means it will halve the speed it changes at. So we double the rate at which we read it to keep things consistent.
503 lines
14 KiB
C++
503 lines
14 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This is the APMrover2 firmware. It was originally derived from
|
|
ArduPlane by Jean-Louis Naudin (JLN), and then rewritten after the
|
|
AP_HAL merge by Andrew Tridgell
|
|
|
|
Maintainer: Andrew Tridgell
|
|
|
|
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Jean-Louis Naudin
|
|
|
|
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier
|
|
|
|
APMrover alpha version tester: Franco Borasio, Daniel Chapelat...
|
|
|
|
Please contribute your ideas! See http://dev.ardupilot.com for details
|
|
*/
|
|
|
|
#include "Rover.h"
|
|
|
|
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
|
|
|
|
Rover rover;
|
|
|
|
#define SCHED_TASK(func) FUNCTOR_BIND(&rover, &Rover::func, void)
|
|
|
|
/*
|
|
scheduler table - all regular tasks should be listed here, along
|
|
with how often they should be called (in 20ms units) and the maximum
|
|
time they are expected to take (in microseconds)
|
|
*/
|
|
const AP_Scheduler::Task Rover::scheduler_tasks[] PROGMEM = {
|
|
{ SCHED_TASK(read_radio), 1, 1000 },
|
|
{ SCHED_TASK(ahrs_update), 1, 6400 },
|
|
{ SCHED_TASK(read_sonars), 1, 2000 },
|
|
{ SCHED_TASK(update_current_mode), 1, 1500 },
|
|
{ SCHED_TASK(set_servos), 1, 1500 },
|
|
{ SCHED_TASK(update_GPS_50Hz), 1, 2500 },
|
|
{ SCHED_TASK(update_GPS_10Hz), 5, 2500 },
|
|
{ SCHED_TASK(update_alt), 5, 3400 },
|
|
{ SCHED_TASK(navigate), 5, 1600 },
|
|
{ SCHED_TASK(update_compass), 5, 2000 },
|
|
{ SCHED_TASK(update_commands), 5, 1000 },
|
|
{ SCHED_TASK(update_logging1), 5, 1000 },
|
|
{ SCHED_TASK(update_logging2), 5, 1000 },
|
|
{ SCHED_TASK(gcs_retry_deferred), 1, 1000 },
|
|
{ SCHED_TASK(gcs_update), 1, 1700 },
|
|
{ SCHED_TASK(gcs_data_stream_send), 1, 3000 },
|
|
{ SCHED_TASK(read_control_switch), 7, 1000 },
|
|
{ SCHED_TASK(read_trim_switch), 5, 1000 },
|
|
{ SCHED_TASK(read_battery), 5, 1000 },
|
|
{ SCHED_TASK(read_receiver_rssi), 5, 1000 },
|
|
{ SCHED_TASK(update_events), 1, 1000 },
|
|
{ SCHED_TASK(check_usb_mux), 15, 1000 },
|
|
{ SCHED_TASK(mount_update), 1, 600 },
|
|
{ SCHED_TASK(gcs_failsafe_check), 5, 600 },
|
|
{ SCHED_TASK(compass_accumulate), 1, 900 },
|
|
{ SCHED_TASK(update_notify), 1, 300 },
|
|
{ SCHED_TASK(one_second_loop), 50, 3000 },
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
{ SCHED_TASK(frsky_telemetry_send), 10, 100 }
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
setup is called when the sketch starts
|
|
*/
|
|
void Rover::setup()
|
|
{
|
|
cliSerial = hal.console;
|
|
|
|
// load the default values of variables listed in var_info[]
|
|
AP_Param::setup_sketch_defaults();
|
|
|
|
notify.init(false);
|
|
|
|
// rover does not use arming nor pre-arm checks
|
|
AP_Notify::flags.armed = true;
|
|
AP_Notify::flags.pre_arm_check = true;
|
|
AP_Notify::flags.pre_arm_gps_check = true;
|
|
AP_Notify::flags.failsafe_battery = false;
|
|
|
|
rssi_analog_source = hal.analogin->channel(ANALOG_INPUT_NONE);
|
|
|
|
init_ardupilot();
|
|
|
|
// initialise the main loop scheduler
|
|
scheduler.init(&scheduler_tasks[0], ARRAY_SIZE(scheduler_tasks));
|
|
}
|
|
|
|
/*
|
|
loop() is called rapidly while the sketch is running
|
|
*/
|
|
void Rover::loop()
|
|
{
|
|
// wait for an INS sample
|
|
ins.wait_for_sample();
|
|
|
|
uint32_t timer = hal.scheduler->micros();
|
|
|
|
delta_us_fast_loop = timer - fast_loopTimer_us;
|
|
G_Dt = delta_us_fast_loop * 1.0e-6f;
|
|
fast_loopTimer_us = timer;
|
|
|
|
if (delta_us_fast_loop > G_Dt_max)
|
|
G_Dt_max = delta_us_fast_loop;
|
|
|
|
mainLoop_count++;
|
|
|
|
// tell the scheduler one tick has passed
|
|
scheduler.tick();
|
|
scheduler.run(19500U);
|
|
}
|
|
|
|
// update AHRS system
|
|
void Rover::ahrs_update()
|
|
{
|
|
hal.util->set_soft_armed(hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED);
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
// update hil before AHRS update
|
|
gcs_update();
|
|
#endif
|
|
|
|
// when in reverse we need to tell AHRS not to assume we are a
|
|
// 'fly forward' vehicle, otherwise it will see a large
|
|
// discrepancy between the mag and the GPS heading and will try to
|
|
// correct for it, leading to a large yaw error
|
|
ahrs.set_fly_forward(!in_reverse);
|
|
|
|
ahrs.update();
|
|
|
|
// if using the EKF get a speed update now (from accelerometers)
|
|
Vector3f velocity;
|
|
if (ahrs.get_velocity_NED(velocity)) {
|
|
ground_speed = pythagorous2(velocity.x, velocity.y);
|
|
}
|
|
|
|
if (should_log(MASK_LOG_ATTITUDE_FAST))
|
|
Log_Write_Attitude();
|
|
|
|
if (should_log(MASK_LOG_IMU)) {
|
|
DataFlash.Log_Write_IMU(ins);
|
|
DataFlash.Log_Write_IMUDT(ins);
|
|
}
|
|
}
|
|
|
|
/*
|
|
update camera mount - 50Hz
|
|
*/
|
|
void Rover::mount_update(void)
|
|
{
|
|
#if MOUNT == ENABLED
|
|
camera_mount.update();
|
|
#endif
|
|
#if CAMERA == ENABLED
|
|
camera.trigger_pic_cleanup();
|
|
#endif
|
|
}
|
|
|
|
void Rover::update_alt()
|
|
{
|
|
barometer.update();
|
|
if (should_log(MASK_LOG_IMU)) {
|
|
Log_Write_Baro();
|
|
}
|
|
}
|
|
|
|
/*
|
|
check for GCS failsafe - 10Hz
|
|
*/
|
|
void Rover::gcs_failsafe_check(void)
|
|
{
|
|
if (g.fs_gcs_enabled) {
|
|
failsafe_trigger(FAILSAFE_EVENT_GCS, last_heartbeat_ms != 0 && (millis() - last_heartbeat_ms) > 2000);
|
|
}
|
|
}
|
|
|
|
/*
|
|
if the compass is enabled then try to accumulate a reading
|
|
*/
|
|
void Rover::compass_accumulate(void)
|
|
{
|
|
if (g.compass_enabled) {
|
|
compass.accumulate();
|
|
}
|
|
}
|
|
|
|
/*
|
|
check for new compass data - 10Hz
|
|
*/
|
|
void Rover::update_compass(void)
|
|
{
|
|
if (g.compass_enabled && compass.read()) {
|
|
ahrs.set_compass(&compass);
|
|
// update offsets
|
|
compass.learn_offsets();
|
|
if (should_log(MASK_LOG_COMPASS)) {
|
|
DataFlash.Log_Write_Compass(compass);
|
|
}
|
|
} else {
|
|
ahrs.set_compass(NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
log some key data - 10Hz
|
|
*/
|
|
void Rover::update_logging1(void)
|
|
{
|
|
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST))
|
|
Log_Write_Attitude();
|
|
|
|
if (should_log(MASK_LOG_CTUN))
|
|
Log_Write_Control_Tuning();
|
|
|
|
if (should_log(MASK_LOG_NTUN))
|
|
Log_Write_Nav_Tuning();
|
|
}
|
|
|
|
/*
|
|
log some key data - 10Hz
|
|
*/
|
|
void Rover::update_logging2(void)
|
|
{
|
|
if (should_log(MASK_LOG_STEERING)) {
|
|
if (control_mode == STEERING || control_mode == AUTO || control_mode == RTL || control_mode == GUIDED) {
|
|
Log_Write_Steering();
|
|
}
|
|
}
|
|
|
|
if (should_log(MASK_LOG_RC))
|
|
Log_Write_RC();
|
|
}
|
|
|
|
|
|
/*
|
|
update aux servo mappings
|
|
*/
|
|
void Rover::update_aux(void)
|
|
{
|
|
RC_Channel_aux::enable_aux_servos();
|
|
}
|
|
|
|
/*
|
|
once a second events
|
|
*/
|
|
void Rover::one_second_loop(void)
|
|
{
|
|
if (should_log(MASK_LOG_CURRENT))
|
|
Log_Write_Current();
|
|
// send a heartbeat
|
|
gcs_send_message(MSG_HEARTBEAT);
|
|
|
|
// allow orientation change at runtime to aid config
|
|
ahrs.set_orientation();
|
|
|
|
set_control_channels();
|
|
|
|
// cope with changes to aux functions
|
|
update_aux();
|
|
|
|
// cope with changes to mavlink system ID
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
static uint8_t counter;
|
|
|
|
counter++;
|
|
|
|
// write perf data every 20s
|
|
if (counter % 10 == 0) {
|
|
if (scheduler.debug() != 0) {
|
|
hal.console->printf_P(PSTR("G_Dt_max=%lu\n"), (unsigned long)G_Dt_max);
|
|
}
|
|
if (should_log(MASK_LOG_PM))
|
|
Log_Write_Performance();
|
|
G_Dt_max = 0;
|
|
resetPerfData();
|
|
}
|
|
|
|
// save compass offsets once a minute
|
|
if (counter >= 60) {
|
|
if (g.compass_enabled) {
|
|
compass.save_offsets();
|
|
}
|
|
counter = 0;
|
|
}
|
|
|
|
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
|
|
}
|
|
|
|
void Rover::update_GPS_50Hz(void)
|
|
{
|
|
static uint32_t last_gps_reading[GPS_MAX_INSTANCES];
|
|
gps.update();
|
|
|
|
for (uint8_t i=0; i<gps.num_sensors(); i++) {
|
|
if (gps.last_message_time_ms(i) != last_gps_reading[i]) {
|
|
last_gps_reading[i] = gps.last_message_time_ms(i);
|
|
if (should_log(MASK_LOG_GPS)) {
|
|
DataFlash.Log_Write_GPS(gps, i, current_loc.alt);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Rover::update_GPS_10Hz(void)
|
|
{
|
|
have_position = ahrs.get_position(current_loc);
|
|
|
|
if (have_position && gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
|
|
if (ground_start_count > 1){
|
|
ground_start_count--;
|
|
|
|
} else if (ground_start_count == 1) {
|
|
// We countdown N number of good GPS fixes
|
|
// so that the altitude is more accurate
|
|
// -------------------------------------
|
|
if (current_loc.lat == 0) {
|
|
ground_start_count = 20;
|
|
} else {
|
|
init_home();
|
|
|
|
// set system clock for log timestamps
|
|
hal.util->set_system_clock(gps.time_epoch_usec());
|
|
|
|
if (g.compass_enabled) {
|
|
// Set compass declination automatically
|
|
compass.set_initial_location(gps.location().lat, gps.location().lng);
|
|
}
|
|
ground_start_count = 0;
|
|
}
|
|
}
|
|
Vector3f velocity;
|
|
if (ahrs.get_velocity_NED(velocity)) {
|
|
ground_speed = pythagorous2(velocity.x, velocity.y);
|
|
} else {
|
|
ground_speed = gps.ground_speed();
|
|
}
|
|
|
|
#if CAMERA == ENABLED
|
|
if (camera.update_location(current_loc) == true) {
|
|
do_take_picture();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void Rover::update_current_mode(void)
|
|
{
|
|
switch (control_mode){
|
|
case AUTO:
|
|
case RTL:
|
|
set_reverse(false);
|
|
calc_lateral_acceleration();
|
|
calc_nav_steer();
|
|
calc_throttle(g.speed_cruise);
|
|
break;
|
|
|
|
case GUIDED:
|
|
set_reverse(false);
|
|
if (!rtl_complete) {
|
|
if (verify_RTL()) {
|
|
// we have reached destination so stop where we are
|
|
channel_throttle->servo_out = g.throttle_min.get();
|
|
channel_steer->servo_out = 0;
|
|
lateral_acceleration = 0;
|
|
} else {
|
|
calc_lateral_acceleration();
|
|
calc_nav_steer();
|
|
calc_throttle(g.speed_cruise);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case STEERING: {
|
|
/*
|
|
in steering mode we control lateral acceleration
|
|
directly. We first calculate the maximum lateral
|
|
acceleration at full steering lock for this speed. That is
|
|
V^2/R where R is the radius of turn. We get the radius of
|
|
turn from half the STEER2SRV_P.
|
|
*/
|
|
float max_g_force = ground_speed * ground_speed / steerController.get_turn_radius();
|
|
|
|
// constrain to user set TURN_MAX_G
|
|
max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS);
|
|
|
|
lateral_acceleration = max_g_force * (channel_steer->pwm_to_angle()/4500.0f);
|
|
calc_nav_steer();
|
|
|
|
// and throttle gives speed in proportion to cruise speed, up
|
|
// to 50% throttle, then uses nudging above that.
|
|
float target_speed = channel_throttle->pwm_to_angle() * 0.01f * 2 * g.speed_cruise;
|
|
set_reverse(target_speed < 0);
|
|
if (in_reverse) {
|
|
target_speed = constrain_float(target_speed, -g.speed_cruise, 0);
|
|
} else {
|
|
target_speed = constrain_float(target_speed, 0, g.speed_cruise);
|
|
}
|
|
calc_throttle(target_speed);
|
|
break;
|
|
}
|
|
|
|
case LEARNING:
|
|
case MANUAL:
|
|
/*
|
|
in both MANUAL and LEARNING we pass through the
|
|
controls. Setting servo_out here actually doesn't matter, as
|
|
we set the exact value in set_servos(), but it helps for
|
|
logging
|
|
*/
|
|
channel_throttle->servo_out = channel_throttle->control_in;
|
|
channel_steer->servo_out = channel_steer->pwm_to_angle();
|
|
|
|
// mark us as in_reverse when using a negative throttle to
|
|
// stop AHRS getting off
|
|
set_reverse(channel_throttle->servo_out < 0);
|
|
break;
|
|
|
|
case HOLD:
|
|
// hold position - stop motors and center steering
|
|
channel_throttle->servo_out = 0;
|
|
channel_steer->servo_out = 0;
|
|
set_reverse(false);
|
|
break;
|
|
|
|
case INITIALISING:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Rover::update_navigation()
|
|
{
|
|
switch (control_mode) {
|
|
case MANUAL:
|
|
case HOLD:
|
|
case LEARNING:
|
|
case STEERING:
|
|
case INITIALISING:
|
|
break;
|
|
|
|
case AUTO:
|
|
mission.update();
|
|
break;
|
|
|
|
case RTL:
|
|
// no loitering around the wp with the rover, goes direct to the wp position
|
|
calc_lateral_acceleration();
|
|
calc_nav_steer();
|
|
if (verify_RTL()) {
|
|
channel_throttle->servo_out = g.throttle_min.get();
|
|
set_mode(HOLD);
|
|
}
|
|
break;
|
|
|
|
case GUIDED:
|
|
// no loitering around the wp with the rover, goes direct to the wp position
|
|
calc_lateral_acceleration();
|
|
calc_nav_steer();
|
|
if (!rtl_complete) {
|
|
if (verify_RTL()) {
|
|
// we have reached destination so stop where we are
|
|
channel_throttle->servo_out = g.throttle_min.get();
|
|
channel_steer->servo_out = 0;
|
|
lateral_acceleration = 0;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void setup(void);
|
|
void loop(void);
|
|
|
|
void setup(void)
|
|
{
|
|
rover.setup();
|
|
}
|
|
void loop(void)
|
|
{
|
|
rover.loop();
|
|
}
|
|
|
|
AP_HAL_MAIN();
|