ardupilot/libraries/AP_BattMonitor/AP_BattMonitor_INA2xx.cpp
2023-10-08 11:04:21 +11:00

354 lines
10 KiB
C++

#include "AP_BattMonitor_config.h"
#if AP_BATTERY_INA2XX_ENABLED
/*
supports INA226, INA228 and INA238 I2C battery monitors
*/
#include <AP_HAL/utility/sparse-endian.h>
#include "AP_BattMonitor_INA2xx.h"
extern const AP_HAL::HAL& hal;
// INA226 specific registers
#define REG_226_CONFIG 0x00
#define REG_226_CONFIG_DEFAULT 0x4127
#define REG_226_CONFIG_RESET 0x8000
#define REG_226_BUS_VOLTAGE 0x02
#define REG_226_CURRENT 0x04
#define REG_226_CALIBRATION 0x05
#define REG_226_MANUFACT_ID 0xfe
// INA228 specific registers
#define REG_228_CONFIG 0x00
#define REG_228_CONFIG_RESET 0x8000
#define REG_228_ADC_CONFIG 0x01
#define REG_228_SHUNT_CAL 0x02
#define REG_228_VBUS 0x05
#define REG_228_CURRENT 0x07
#define REG_228_MANUFACT_ID 0x3e
#define REG_228_DEVICE_ID 0x3f
// INA238 specific registers
#define REG_238_CONFIG 0x00
#define REG_238_CONFIG_RESET 0x8000
#define REG_238_ADC_CONFIG 0x01
#define REG_238_SHUNT_CAL 0x02
#define REG_238_VBUS 0x05
#define REG_238_CURRENT 0x07
#define REG_238_MANUFACT_ID 0x3e
#define REG_238_DEVICE_ID 0x3f
#ifndef DEFAULT_BATTMON_INA2XX_MAX_AMPS
#define DEFAULT_BATTMON_INA2XX_MAX_AMPS 90.0
#endif
#ifndef DEFAULT_BATTMON_INA2XX_SHUNT
#define DEFAULT_BATTMON_INA2XX_SHUNT 0.0005
#endif
#ifndef HAL_BATTMON_INA2XX_BUS
#define HAL_BATTMON_INA2XX_BUS 0
#endif
#ifndef HAL_BATTMON_INA2XX_ADDR
#define HAL_BATTMON_INA2XX_ADDR 0
#endif
// list of addresses to probe if I2C_ADDR is zero
const uint8_t AP_BattMonitor_INA2XX::i2c_probe_addresses[] { 0x41, 0x44, 0x45 };
const AP_Param::GroupInfo AP_BattMonitor_INA2XX::var_info[] = {
// @Param: I2C_BUS
// @DisplayName: Battery monitor I2C bus number
// @Description: Battery monitor I2C bus number
// @Range: 0 3
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("I2C_BUS", 25, AP_BattMonitor_INA2XX, i2c_bus, HAL_BATTMON_INA2XX_BUS),
// @Param: I2C_ADDR
// @DisplayName: Battery monitor I2C address
// @Description: Battery monitor I2C address. If this is zero then probe list of supported addresses
// @Range: 0 127
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("I2C_ADDR", 26, AP_BattMonitor_INA2XX, i2c_address, HAL_BATTMON_INA2XX_ADDR),
// @Param: MAX_AMPS
// @DisplayName: Battery monitor max current
// @Description: This controls the maximum current the INS2XX sensor will work with.
// @Range: 1 400
// @Units: A
// @User: Advanced
AP_GROUPINFO("MAX_AMPS", 27, AP_BattMonitor_INA2XX, max_amps, DEFAULT_BATTMON_INA2XX_MAX_AMPS),
// @Param: SHUNT
// @DisplayName: Battery monitor shunt resistor
// @Description: This sets the shunt resistor used in the device
// @Range: 0.0001 0.01
// @Units: Ohm
// @User: Advanced
AP_GROUPINFO("SHUNT", 28, AP_BattMonitor_INA2XX, rShunt, DEFAULT_BATTMON_INA2XX_SHUNT),
AP_GROUPEND
};
AP_BattMonitor_INA2XX::AP_BattMonitor_INA2XX(AP_BattMonitor &mon,
AP_BattMonitor::BattMonitor_State &mon_state,
AP_BattMonitor_Params &params)
: AP_BattMonitor_Backend(mon, mon_state, params)
{
AP_Param::setup_object_defaults(this, var_info);
_state.var_info = var_info;
}
void AP_BattMonitor_INA2XX::init(void)
{
dev = hal.i2c_mgr->get_device(i2c_bus, i2c_address, 100000, false, 20);
if (!dev) {
return;
}
// register now and configure in the timer callbacks
dev->register_periodic_callback(25000, FUNCTOR_BIND_MEMBER(&AP_BattMonitor_INA2XX::timer, void));
}
bool AP_BattMonitor_INA2XX::configure(DevType dtype)
{
switch (dtype) {
case DevType::UNKNOWN:
return false;
case DevType::INA226: {
// configure for MAX_AMPS
const uint16_t conf = (0x2<<9) | (0x5<<6) | (0x5<<3) | 0x7; // 2ms conv time, 16x sampling
current_LSB = max_amps / 32768.0;
voltage_LSB = 0.00125; // 1.25mV/bit
const uint16_t cal = uint16_t(0.00512 / (current_LSB * rShunt));
if (write_word(REG_226_CONFIG, REG_226_CONFIG_RESET) && // reset
write_word(REG_226_CONFIG, conf) &&
write_word(REG_226_CALIBRATION, cal)) {
dev_type = dtype;
return true;
}
break;
}
case DevType::INA228: {
// configure for MAX_AMPS
voltage_LSB = 195.3125e-6; // 195.3125 uV/LSB
current_LSB = max_amps / (1<<19);
const uint16_t shunt_cal = uint16_t(13107.2e6 * current_LSB * rShunt) & 0x7FFF;
if (write_word(REG_228_CONFIG, REG_228_CONFIG_RESET) && // reset
write_word(REG_228_CONFIG, 0) &&
write_word(REG_228_SHUNT_CAL, shunt_cal)) {
dev_type = dtype;
return true;
}
break;
}
case DevType::INA238: {
// configure for MAX_AMPS
voltage_LSB = 3.125e-3; // 3.125mV/LSB
current_LSB = max_amps / (1<<15);
const uint16_t shunt_cal = uint16_t(819.2e6 * current_LSB * rShunt) & 0x7FFF;
if (write_word(REG_238_CONFIG, REG_238_CONFIG_RESET) && // reset
write_word(REG_238_CONFIG, 0) &&
write_word(REG_238_SHUNT_CAL, shunt_cal)) {
dev_type = dtype;
return true;
}
break;
}
}
return false;
}
/// read the battery_voltage and current, should be called at 10hz
void AP_BattMonitor_INA2XX::read(void)
{
WITH_SEMAPHORE(accumulate.sem);
_state.healthy = accumulate.count > 0;
if (!_state.healthy) {
return;
}
_state.voltage = accumulate.volt_sum / accumulate.count;
_state.current_amps = accumulate.current_sum / accumulate.count;
accumulate.volt_sum = 0;
accumulate.current_sum = 0;
accumulate.count = 0;
const uint32_t tnow = AP_HAL::micros();
const uint32_t dt_us = tnow - _state.last_time_micros;
// update total current drawn since startup
update_consumed(_state, dt_us);
_state.last_time_micros = tnow;
}
/*
read 16 bit word from register
returns true if read was successful, false if failed
*/
bool AP_BattMonitor_INA2XX::read_word16(const uint8_t reg, int16_t& data) const
{
// read the appropriate register from the device
if (!dev->read_registers(reg, (uint8_t *)&data, sizeof(data))) {
return false;
}
// convert byte order
data = int16_t(be16toh(uint16_t(data)));
return true;
}
/*
read 24 bit signed value from register
returns true if read was successful, false if failed
*/
bool AP_BattMonitor_INA2XX::read_word24(const uint8_t reg, int32_t& data) const
{
// read the appropriate register from the device
uint8_t d[3];
if (!dev->read_registers(reg, d, sizeof(d))) {
return false;
}
// 24 bit 2s complement data. Shift into upper 24 bits of int32_t then divide by 256
// to cope with negative numbers properly
data = d[0]<<24 | d[1]<<16 | d[2] << 8;
data = data / 256;
return true;
}
/*
write word to a register, byte swapped
returns true if write was successful, false if failed
*/
bool AP_BattMonitor_INA2XX::write_word(const uint8_t reg, const uint16_t data) const
{
const uint8_t b[3] { reg, uint8_t(data >> 8), uint8_t(data&0xff) };
return dev->transfer(b, sizeof(b), nullptr, 0);
}
/*
detect device type. This may happen well after power on if battery is
not plugged in yet
*/
bool AP_BattMonitor_INA2XX::detect_device(void)
{
uint32_t now = AP_HAL::millis();
if (now - last_detect_ms < 200) {
// don't flood the bus
return false;
}
last_detect_ms = now;
int16_t id;
WITH_SEMAPHORE(dev->get_semaphore());
if (i2c_address.get() == 0) {
dev->set_address(i2c_probe_addresses[i2c_probe_next]);
i2c_probe_next = (i2c_probe_next+1) % sizeof(i2c_probe_addresses);
}
if (read_word16(REG_228_MANUFACT_ID, id) && id == 0x5449 &&
read_word16(REG_228_DEVICE_ID, id) && (id&0xFFF0) == 0x2280) {
return configure(DevType::INA228);
}
if (read_word16(REG_238_MANUFACT_ID, id) && id == 0x5449 &&
read_word16(REG_238_DEVICE_ID, id) && (id&0xFFF0) == 0x2380) {
return configure(DevType::INA238);
}
if (read_word16(REG_226_MANUFACT_ID, id) && id == 0x5449 &&
write_word(REG_226_CONFIG, REG_226_CONFIG_RESET) &&
write_word(REG_226_CONFIG, REG_226_CONFIG_DEFAULT) &&
read_word16(REG_226_CONFIG, id) &&
id == REG_226_CONFIG_DEFAULT) {
return configure(DevType::INA226);
}
return false;
}
void AP_BattMonitor_INA2XX::timer(void)
{
if (dev_type == DevType::UNKNOWN) {
if (!detect_device()) {
return;
}
}
float voltage = 0, current = 0;
switch (dev_type) {
case DevType::UNKNOWN:
return;
case DevType::INA226: {
int16_t bus_voltage16, current16;
if (!read_word16(REG_226_BUS_VOLTAGE, bus_voltage16) ||
!read_word16(REG_226_CURRENT, current16)) {
failed_reads++;
if (failed_reads > 10) {
// device has disconnected, we need to reconfigure it
dev_type = DevType::UNKNOWN;
}
return;
}
voltage = bus_voltage16 * voltage_LSB;
current = current16 * current_LSB;
break;
}
case DevType::INA228: {
int32_t bus_voltage24, current24;
if (!read_word24(REG_228_VBUS, bus_voltage24) ||
!read_word24(REG_228_CURRENT, current24)) {
failed_reads++;
if (failed_reads > 10) {
// device has disconnected, we need to reconfigure it
dev_type = DevType::UNKNOWN;
}
return;
}
voltage = (bus_voltage24>>4) * voltage_LSB;
current = (current24>>4) * current_LSB;
break;
}
case DevType::INA238: {
int16_t bus_voltage16, current16;
if (!read_word16(REG_238_VBUS, bus_voltage16) ||
!read_word16(REG_238_CURRENT, current16)) {
failed_reads++;
if (failed_reads > 10) {
// device has disconnected, we need to reconfigure it
dev_type = DevType::UNKNOWN;
}
return;
}
voltage = bus_voltage16 * voltage_LSB;
current = current16 * current_LSB;
break;
}
}
failed_reads = 0;
WITH_SEMAPHORE(accumulate.sem);
accumulate.volt_sum += voltage;
accumulate.current_sum += current;
accumulate.count++;
}
#endif // AP_BATTERY_INA2XX_ENABLED