mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 16:38:30 -04:00
428 lines
16 KiB
C++
428 lines
16 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
gimbal simulator class for MAVLink gimbal
|
|
*/
|
|
|
|
#include "SIM_Gimbal.h"
|
|
|
|
#if HAL_SIM_GIMBAL_ENABLED
|
|
|
|
#include <stdio.h>
|
|
|
|
#include "SIM_Aircraft.h"
|
|
|
|
#include <AP_InertialSensor/AP_InertialSensor.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define GIMBAL_DEBUG 0
|
|
|
|
#if GIMBAL_DEBUG
|
|
#define debug(fmt, args...) do { printf("GIMBAL: " fmt, ##args); } while(0)
|
|
#else
|
|
#define debug(fmt, args...) do { } while(0)
|
|
#endif
|
|
|
|
namespace SITL {
|
|
|
|
Gimbal::Gimbal(const struct sitl_fdm &_fdm) :
|
|
fdm(_fdm),
|
|
target_address("127.0.0.1"),
|
|
target_port(5762),
|
|
lower_joint_limits(radians(-40), radians(-135), radians(-7.5)),
|
|
upper_joint_limits(radians(40), radians(45), radians(7.5)),
|
|
travelLimitGain(20),
|
|
reporting_period_ms(10),
|
|
seen_heartbeat(false),
|
|
seen_gimbal_control(false),
|
|
mav_socket(false)
|
|
{
|
|
memset(&mavlink, 0, sizeof(mavlink));
|
|
fdm.quaternion.rotation_matrix(dcm);
|
|
}
|
|
|
|
|
|
/*
|
|
update the gimbal state
|
|
*/
|
|
void Gimbal::update(void)
|
|
{
|
|
// calculate delta time in seconds
|
|
uint32_t now_us = AP_HAL::micros();
|
|
|
|
float delta_t = (now_us - last_update_us) * 1.0e-6f;
|
|
last_update_us = now_us;
|
|
|
|
Matrix3f vehicle_dcm;
|
|
fdm.quaternion.rotation_matrix(vehicle_dcm);
|
|
|
|
const Vector3f &vehicle_gyro = AP::ins().get_gyro();
|
|
const Vector3f &vehicle_accel_body = AP::ins().get_accel();
|
|
|
|
// take a copy of the demanded rates to bypass the limiter function for testing
|
|
Vector3f demRateRaw = demanded_angular_rate;
|
|
|
|
// 1) Rotate the copters rotation rates into the gimbals frame of reference
|
|
// copterAngRate_G = transpose(DCMgimbal)*DCMcopter*copterAngRate
|
|
Vector3f copterAngRate_G = dcm.transposed()*vehicle_dcm*vehicle_gyro;
|
|
|
|
// 2) Subtract the copters body rates to obtain a copter relative rotational
|
|
// rate vector (X,Y,Z) in gimbal sensor frame
|
|
// relativeGimbalRate(X,Y,Z) = gimbalRateDemand - copterAngRate_G
|
|
Vector3f relativeGimbalRate = demanded_angular_rate - copterAngRate_G;
|
|
|
|
// calculate joint angles (euler312 order)
|
|
// calculate copter -> gimbal rotation matrix
|
|
Matrix3f rotmat_copter_gimbal = dcm.transposed() * vehicle_dcm;
|
|
|
|
joint_angles = rotmat_copter_gimbal.transposed().to_euler312();
|
|
|
|
/* 4) For each of the three joints, calculate upper and lower rate limits
|
|
from the corresponding angle limits and current joint angles
|
|
|
|
upperRatelimit = (jointAngle - lowerAngleLimit) * travelLimitGain
|
|
lowerRatelimit = (jointAngle - upperAngleLimit) * travelLimitGain
|
|
|
|
travelLimitGain is equal to the inverse of the bump stop time constant and
|
|
should be set to something like 20 initially. If set too high it can cause
|
|
the rates to 'ring' when they the limiter is in force, particularly given
|
|
we are using a first order numerical integration.
|
|
*/
|
|
Vector3f upperRatelimit = -(joint_angles - upper_joint_limits) * travelLimitGain;
|
|
Vector3f lowerRatelimit = -(joint_angles - lower_joint_limits) * travelLimitGain;
|
|
|
|
/*
|
|
5) Calculate the gimbal joint rates (roll, elevation, azimuth)
|
|
|
|
gimbalJointRates(roll, elev, azimuth) = Matrix*relativeGimbalRate(X,Y,Z)
|
|
|
|
where matrix =
|
|
+- -+
|
|
| cos(elevAngle), 0, sin(elevAngle) |
|
|
| |
|
|
| sin(elevAngle) tan(rollAngle), 1, -cos(elevAngle) tan(rollAngle) |
|
|
| |
|
|
| sin(elevAngle) cos(elevAngle) |
|
|
| - --------------, 0, -------------- |
|
|
| cos(rollAngle) cos(rollAngle) |
|
|
+- -+
|
|
*/
|
|
float rollAngle = joint_angles.x;
|
|
float elevAngle = joint_angles.y;
|
|
Matrix3f matrix = Matrix3f(Vector3f(cosf(elevAngle), 0, sinf(elevAngle)),
|
|
Vector3f(sinf(elevAngle)*tanf(rollAngle), 1, -cosf(elevAngle)*tanf(rollAngle)),
|
|
Vector3f(-sinf(elevAngle)/cosf(rollAngle), 0, cosf(elevAngle)/cosf(rollAngle)));
|
|
Vector3f gimbalJointRates = matrix * relativeGimbalRate;
|
|
|
|
// 6) Apply the rate limits from 4)
|
|
gimbalJointRates.x = constrain_float(gimbalJointRates.x, lowerRatelimit.x, upperRatelimit.x);
|
|
gimbalJointRates.y = constrain_float(gimbalJointRates.y, lowerRatelimit.y, upperRatelimit.y);
|
|
gimbalJointRates.z = constrain_float(gimbalJointRates.z, lowerRatelimit.z, upperRatelimit.z);
|
|
/*
|
|
7) Convert the modified gimbal joint rates to body rates (still copter
|
|
relative)
|
|
relativeGimbalRate(X,Y,Z) = Matrix * gimbalJointRates(roll, elev, azimuth)
|
|
|
|
where Matrix =
|
|
|
|
+- -+
|
|
| cos(elevAngle), 0, -cos(rollAngle) sin(elevAngle) |
|
|
| |
|
|
| 0, 1, sin(rollAngle) |
|
|
| |
|
|
| sin(elevAngle), 0, cos(elevAngle) cos(rollAngle) |
|
|
+- -+
|
|
*/
|
|
matrix = Matrix3f(Vector3f(cosf(elevAngle), 0, -cosf(rollAngle)*sinf(elevAngle)),
|
|
Vector3f(0, 1, sinf(rollAngle)),
|
|
Vector3f(sinf(elevAngle), 0, cosf(elevAngle)*cosf(rollAngle)));
|
|
relativeGimbalRate = matrix * gimbalJointRates;
|
|
|
|
// 8) Add to the result from step 1) to obtain the demanded gimbal body rates
|
|
// in an inertial frame of reference
|
|
// demandedGimbalRatesInertial(X,Y,Z) = relativeGimbalRate(X,Y,Z) + copterAngRate_G
|
|
// Vector3f demandedGimbalRatesInertial = relativeGimbalRate + copterAngRate_G;
|
|
|
|
// for the moment we will set gyros equal to demanded_angular_rate
|
|
gimbal_angular_rate = demRateRaw; // demandedGimbalRatesInertial + true_gyro_bias - supplied_gyro_bias
|
|
|
|
// update rotation of the gimbal
|
|
dcm.rotate(gimbal_angular_rate*delta_t);
|
|
dcm.normalize();
|
|
|
|
// calculate copter -> gimbal rotation matrix
|
|
rotmat_copter_gimbal = dcm.transposed() * vehicle_dcm;
|
|
|
|
// calculate joint angles (euler312 order)
|
|
joint_angles = rotmat_copter_gimbal.transposed().to_euler312();
|
|
|
|
// update observed gyro
|
|
gyro = gimbal_angular_rate + true_gyro_bias;
|
|
|
|
// update delta_angle (integrate)
|
|
delta_angle += gyro * delta_t;
|
|
|
|
// calculate accel in gimbal body frame
|
|
Vector3f copter_accel_earth = vehicle_dcm * vehicle_accel_body;
|
|
Vector3f accel = dcm.transposed() * copter_accel_earth;
|
|
|
|
// integrate velocity
|
|
delta_velocity += accel * delta_t;
|
|
|
|
// see if we should do a report
|
|
send_report();
|
|
}
|
|
|
|
static struct gimbal_param {
|
|
const char *name;
|
|
float value;
|
|
} gimbal_params[] = {
|
|
{"GMB_OFF_ACC_X", 0},
|
|
{"GMB_OFF_ACC_Y", 0},
|
|
{"GMB_OFF_ACC_Z", 0},
|
|
{"GMB_GN_ACC_X", 0},
|
|
{"GMB_GN_ACC_Y", 0},
|
|
{"GMB_GN_ACC_Z", 0},
|
|
{"GMB_OFF_GYRO_X", 0},
|
|
{"GMB_OFF_GYRO_Y", 0},
|
|
{"GMB_OFF_GYRO_Z", 0},
|
|
{"GMB_OFF_JNT_X", 0},
|
|
{"GMB_OFF_JNT_Y", 0},
|
|
{"GMB_OFF_JNT_Z", 0},
|
|
{"GMB_K_RATE", 0},
|
|
{"GMB_POS_HOLD", 0},
|
|
{"GMB_MAX_TORQUE", 0},
|
|
{"GMB_SND_TORQUE", 0},
|
|
{"GMB_SYSID", 0},
|
|
{"GMB_FLASH", 0},
|
|
};
|
|
|
|
/*
|
|
find a parameter structure
|
|
*/
|
|
struct gimbal_param *Gimbal::param_find(const char *name)
|
|
{
|
|
for (uint8_t i=0; i<ARRAY_SIZE(gimbal_params); i++) {
|
|
if (strncmp(name, gimbal_params[i].name, 16) == 0) {
|
|
return &gimbal_params[i];
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
send a parameter to flight board
|
|
*/
|
|
void Gimbal::param_send(const struct gimbal_param *p)
|
|
{
|
|
mavlink_message_t msg;
|
|
mavlink_param_value_t param_value{};
|
|
strncpy_noterm(param_value.param_id, p->name, sizeof(param_value.param_id));
|
|
param_value.param_value = p->value;
|
|
param_value.param_count = 0;
|
|
param_value.param_index = 0;
|
|
param_value.param_type = MAV_PARAM_TYPE_REAL32;
|
|
|
|
mavlink_status_t *chan0_status = mavlink_get_channel_status(MAVLINK_COMM_0);
|
|
uint8_t saved_seq = chan0_status->current_tx_seq;
|
|
chan0_status->current_tx_seq = mavlink.seq;
|
|
uint16_t len = mavlink_msg_param_value_encode(vehicle_system_id,
|
|
vehicle_component_id,
|
|
&msg, ¶m_value);
|
|
chan0_status->current_tx_seq = saved_seq;
|
|
|
|
uint8_t msgbuf[len];
|
|
len = mavlink_msg_to_send_buffer(msgbuf, &msg);
|
|
if (len > 0) {
|
|
mav_socket.send(msgbuf, len);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
send a report to the vehicle control code over MAVLink
|
|
*/
|
|
void Gimbal::send_report(void)
|
|
{
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now < 10000) {
|
|
// don't send gimbal reports until 10s after startup. This
|
|
// avoids a windows threading issue with non-blocking sockets
|
|
// and the initial wait on uartA
|
|
return;
|
|
}
|
|
if (!mavlink.connected && mav_socket.connect(target_address, target_port)) {
|
|
::printf("Gimbal connected to %s:%u\n", target_address, (unsigned)target_port);
|
|
mavlink.connected = true;
|
|
}
|
|
if (!mavlink.connected) {
|
|
return;
|
|
}
|
|
|
|
if (param_send_last_ms && now - param_send_last_ms > 100) {
|
|
param_send(&gimbal_params[param_send_idx]);
|
|
if (++param_send_idx == ARRAY_SIZE(gimbal_params)) {
|
|
printf("Finished sending parameters\n");
|
|
param_send_last_ms = 0;
|
|
}
|
|
}
|
|
|
|
// check for incoming MAVLink messages
|
|
uint8_t buf[100];
|
|
ssize_t ret;
|
|
|
|
while ((ret=mav_socket.recv(buf, sizeof(buf), 0)) > 0) {
|
|
for (uint8_t i=0; i<ret; i++) {
|
|
mavlink_message_t msg;
|
|
mavlink_status_t status;
|
|
if (mavlink_frame_char_buffer(&mavlink.rxmsg, &mavlink.status,
|
|
buf[i],
|
|
&msg, &status) == MAVLINK_FRAMING_OK) {
|
|
switch (msg.msgid) {
|
|
case MAVLINK_MSG_ID_HEARTBEAT: {
|
|
mavlink_heartbeat_t pkt;
|
|
mavlink_msg_heartbeat_decode(&msg, &pkt);
|
|
debug("got HB type=%u autopilot=%u base_mode=0x%x\n", pkt.type, pkt.autopilot, pkt.base_mode);
|
|
if (!seen_heartbeat) {
|
|
seen_heartbeat = true;
|
|
vehicle_component_id = msg.compid;
|
|
vehicle_system_id = msg.sysid;
|
|
::printf("Gimbal using srcSystem %u\n", (unsigned)vehicle_system_id);
|
|
}
|
|
break;
|
|
}
|
|
case MAVLINK_MSG_ID_GIMBAL_CONTROL: {
|
|
static uint32_t counter;
|
|
if (counter++ % 100 == 0) {
|
|
printf("GIMBAL_CONTROL %u\n", counter);
|
|
}
|
|
mavlink_gimbal_control_t pkt;
|
|
mavlink_msg_gimbal_control_decode(&msg, &pkt);
|
|
demanded_angular_rate = Vector3f(pkt.demanded_rate_x,
|
|
pkt.demanded_rate_y,
|
|
pkt.demanded_rate_z);
|
|
// no longer supply a bias
|
|
supplied_gyro_bias.zero();
|
|
seen_gimbal_control = true;
|
|
break;
|
|
}
|
|
case MAVLINK_MSG_ID_PARAM_SET: {
|
|
mavlink_param_set_t pkt;
|
|
mavlink_msg_param_set_decode(&msg, &pkt);
|
|
printf("Gimbal got PARAM_SET %.16s %f\n", pkt.param_id, pkt.param_value);
|
|
|
|
struct gimbal_param *p = param_find(pkt.param_id);
|
|
if (p) {
|
|
p->value = pkt.param_value;
|
|
param_send(p);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: {
|
|
mavlink_param_request_list_t pkt;
|
|
mavlink_msg_param_request_list_decode(&msg, &pkt);
|
|
if (pkt.target_system == 0 && pkt.target_component == MAV_COMP_ID_GIMBAL) {
|
|
// start param send
|
|
param_send_idx = 0;
|
|
param_send_last_ms = AP_HAL::millis();
|
|
}
|
|
printf("Gimbal sending %u parameters\n", (unsigned)ARRAY_SIZE(gimbal_params));
|
|
break;
|
|
}
|
|
default:
|
|
debug("got unexpected msg %u\n", msg.msgid);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!seen_heartbeat) {
|
|
return;
|
|
}
|
|
mavlink_message_t msg;
|
|
uint16_t len;
|
|
|
|
if (now - last_heartbeat_ms >= 1000) {
|
|
mavlink_heartbeat_t heartbeat;
|
|
heartbeat.type = MAV_TYPE_GIMBAL;
|
|
heartbeat.autopilot = MAV_AUTOPILOT_ARDUPILOTMEGA;
|
|
heartbeat.base_mode = 0;
|
|
heartbeat.system_status = 0;
|
|
heartbeat.mavlink_version = 0;
|
|
heartbeat.custom_mode = 0;
|
|
|
|
/*
|
|
save and restore sequence number for chan0, as it is used by
|
|
generated encode functions
|
|
*/
|
|
mavlink_status_t *chan0_status = mavlink_get_channel_status(MAVLINK_COMM_0);
|
|
uint8_t saved_seq = chan0_status->current_tx_seq;
|
|
chan0_status->current_tx_seq = mavlink.seq;
|
|
len = mavlink_msg_heartbeat_encode(vehicle_system_id,
|
|
vehicle_component_id,
|
|
&msg, &heartbeat);
|
|
chan0_status->current_tx_seq = saved_seq;
|
|
|
|
mav_socket.send(&msg.magic, len);
|
|
last_heartbeat_ms = now;
|
|
}
|
|
|
|
/*
|
|
send a GIMBAL_REPORT message
|
|
*/
|
|
uint32_t now_us = AP_HAL::micros();
|
|
if (now_us - last_report_us > reporting_period_ms*1000UL) {
|
|
mavlink_gimbal_report_t gimbal_report;
|
|
float delta_time = (now_us - last_report_us) * 1.0e-6f;
|
|
last_report_us = now_us;
|
|
gimbal_report.target_system = vehicle_system_id;
|
|
gimbal_report.target_component = vehicle_component_id;
|
|
gimbal_report.delta_time = delta_time;
|
|
gimbal_report.delta_angle_x = delta_angle.x;
|
|
gimbal_report.delta_angle_y = delta_angle.y;
|
|
gimbal_report.delta_angle_z = delta_angle.z;
|
|
gimbal_report.delta_velocity_x = delta_velocity.x;
|
|
gimbal_report.delta_velocity_y = delta_velocity.y;
|
|
gimbal_report.delta_velocity_z = delta_velocity.z;
|
|
gimbal_report.joint_roll = joint_angles.x;
|
|
gimbal_report.joint_el = joint_angles.y;
|
|
gimbal_report.joint_az = joint_angles.z;
|
|
|
|
mavlink_status_t *chan0_status = mavlink_get_channel_status(MAVLINK_COMM_0);
|
|
uint8_t saved_seq = chan0_status->current_tx_seq;
|
|
chan0_status->current_tx_seq = mavlink.seq;
|
|
len = mavlink_msg_gimbal_report_encode(vehicle_system_id,
|
|
vehicle_component_id,
|
|
&msg, &gimbal_report);
|
|
chan0_status->current_tx_seq = saved_seq;
|
|
|
|
uint8_t msgbuf[len];
|
|
len = mavlink_msg_to_send_buffer(msgbuf, &msg);
|
|
if (len > 0) {
|
|
mav_socket.send(msgbuf, len);
|
|
}
|
|
|
|
delta_velocity.zero();
|
|
delta_angle.zero();
|
|
}
|
|
}
|
|
|
|
} // namespace SITL
|
|
|
|
#endif // HAL_SIM_GIMBAL_ENABLED
|