ardupilot/libraries/AP_UAVCAN/AP_UAVCAN.cpp

1359 lines
48 KiB
C++

/*
* AP_UAVCAN.cpp
*
* Author: Eugene Shamaev
*/
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#if HAL_WITH_UAVCAN
#include "AP_UAVCAN.h"
#include <GCS_MAVLink/GCS.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_BoardConfig/AP_BoardConfig_CAN.h>
// Zubax GPS and other GPS, baro, magnetic sensors
#include <uavcan/equipment/gnss/Fix.hpp>
#include <uavcan/equipment/gnss/Auxiliary.hpp>
#include <uavcan/equipment/ahrs/MagneticFieldStrength.hpp>
#include <uavcan/equipment/ahrs/MagneticFieldStrength2.hpp>
#include <uavcan/equipment/air_data/StaticPressure.hpp>
#include <uavcan/equipment/air_data/StaticTemperature.hpp>
#include <uavcan/equipment/actuator/ArrayCommand.hpp>
#include <uavcan/equipment/actuator/Command.hpp>
#include <uavcan/equipment/actuator/Status.hpp>
#include <uavcan/equipment/esc/RawCommand.hpp>
#include <uavcan/equipment/indication/LightsCommand.hpp>
#include <uavcan/equipment/indication/SingleLightCommand.hpp>
#include <uavcan/equipment/indication/RGB565.hpp>
#include <uavcan/equipment/power/BatteryInfo.hpp>
extern const AP_HAL::HAL& hal;
#define debug_uavcan(level, fmt, args...) do { if ((level) <= AP_BoardConfig_CAN::get_can_debug()) { hal.console->printf(fmt, ##args); }} while (0)
// Translation of all messages from UAVCAN structures into AP structures is done
// in AP_UAVCAN and not in corresponding drivers.
// The overhead of including definitions of DSDL is very high and it is best to
// concentrate in one place.
// TODO: temperature can come not only from baro. There should be separation on node ID
// to check where it belongs to. If it is not baro that is the source, separate layer
// of listeners/nodes should be added.
// table of user settable CAN bus parameters
const AP_Param::GroupInfo AP_UAVCAN::var_info[] = {
// @Param: NODE
// @DisplayName: UAVCAN node that is used for this network
// @Description: UAVCAN node should be set implicitly
// @Range: 1 250
// @User: Advanced
AP_GROUPINFO("NODE", 1, AP_UAVCAN, _uavcan_node, 10),
// @Param: SRV_BM
// @DisplayName: RC Out channels to be transmitted as servo over UAVCAN
// @Description: Bitmask with one set for channel to be transmitted as a servo command over UAVCAN
// @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15
// @User: Advanced
AP_GROUPINFO("SRV_BM", 2, AP_UAVCAN, _servo_bm, 255),
// @Param: ESC_BM
// @DisplayName: RC Out channels to be transmitted as ESC over UAVCAN
// @Description: Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN
// @Bitmask: 0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16
// @User: Advanced
AP_GROUPINFO("ESC_BM", 3, AP_UAVCAN, _esc_bm, 255),
AP_GROUPEND
};
static void gnss_fix_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix>& msg, uint8_t mgr)
{
if (hal.can_mgr[mgr] != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_GPS::GPS_State *state = ap_uavcan->find_gps_node(msg.getSrcNodeID().get());
if (state != nullptr) {
bool process = false;
if (msg.status == uavcan::equipment::gnss::Fix::STATUS_NO_FIX) {
state->status = AP_GPS::GPS_Status::NO_FIX;
} else {
if (msg.status == uavcan::equipment::gnss::Fix::STATUS_TIME_ONLY) {
state->status = AP_GPS::GPS_Status::NO_FIX;
} else if (msg.status == uavcan::equipment::gnss::Fix::STATUS_2D_FIX) {
state->status = AP_GPS::GPS_Status::GPS_OK_FIX_2D;
process = true;
} else if (msg.status == uavcan::equipment::gnss::Fix::STATUS_3D_FIX) {
state->status = AP_GPS::GPS_Status::GPS_OK_FIX_3D;
process = true;
}
if (msg.gnss_time_standard == uavcan::equipment::gnss::Fix::GNSS_TIME_STANDARD_UTC) {
uint64_t epoch_ms = uavcan::UtcTime(msg.gnss_timestamp).toUSec();
epoch_ms /= 1000;
uint64_t gps_ms = epoch_ms - UNIX_OFFSET_MSEC;
state->time_week = (uint16_t)(gps_ms / AP_MSEC_PER_WEEK);
state->time_week_ms = (uint32_t)(gps_ms - (state->time_week) * AP_MSEC_PER_WEEK);
}
}
if (process) {
Location loc = { };
loc.lat = msg.latitude_deg_1e8 / 10;
loc.lng = msg.longitude_deg_1e8 / 10;
loc.alt = msg.height_msl_mm / 10;
state->location = loc;
state->location.options = 0;
if (!uavcan::isNaN(msg.ned_velocity[0])) {
Vector3f vel(msg.ned_velocity[0], msg.ned_velocity[1], msg.ned_velocity[2]);
state->velocity = vel;
state->ground_speed = norm(vel.x, vel.y);
state->ground_course = wrap_360(degrees(atan2f(vel.y, vel.x)));
state->have_vertical_velocity = true;
} else {
state->have_vertical_velocity = false;
}
float pos_cov[9];
msg.position_covariance.unpackSquareMatrix(pos_cov);
if (!uavcan::isNaN(pos_cov[8])) {
if (pos_cov[8] > 0) {
state->vertical_accuracy = sqrtf(pos_cov[8]);
state->have_vertical_accuracy = true;
} else {
state->have_vertical_accuracy = false;
}
} else {
state->have_vertical_accuracy = false;
}
const float horizontal_pos_variance = MAX(pos_cov[0], pos_cov[4]);
if (!uavcan::isNaN(horizontal_pos_variance)) {
if (horizontal_pos_variance > 0) {
state->horizontal_accuracy = sqrtf(horizontal_pos_variance);
state->have_horizontal_accuracy = true;
} else {
state->have_horizontal_accuracy = false;
}
} else {
state->have_horizontal_accuracy = false;
}
float vel_cov[9];
msg.velocity_covariance.unpackSquareMatrix(vel_cov);
if (!uavcan::isNaN(vel_cov[0])) {
state->speed_accuracy = sqrtf((vel_cov[0] + vel_cov[4] + vel_cov[8]) / 3.0);
state->have_speed_accuracy = true;
} else {
state->have_speed_accuracy = false;
}
state->num_sats = msg.sats_used;
} else {
state->have_vertical_velocity = false;
state->have_vertical_accuracy = false;
state->have_horizontal_accuracy = false;
state->have_speed_accuracy = false;
state->num_sats = 0;
}
state->last_gps_time_ms = AP_HAL::millis();
// after all is filled, update all listeners with new data
ap_uavcan->update_gps_state(msg.getSrcNodeID().get());
}
}
}
}
static void gnss_fix_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix>& msg)
{ gnss_fix_cb(msg, 0); }
static void gnss_fix_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix>& msg)
{ gnss_fix_cb(msg, 1); }
static void (*gnss_fix_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix>& msg)
= { gnss_fix_cb0, gnss_fix_cb1 };
static void gnss_aux_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary>& msg, uint8_t mgr)
{
if (hal.can_mgr[mgr] != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_GPS::GPS_State *state = ap_uavcan->find_gps_node(msg.getSrcNodeID().get());
if (state != nullptr) {
if (!uavcan::isNaN(msg.hdop)) {
state->hdop = msg.hdop * 100.0;
}
if (!uavcan::isNaN(msg.vdop)) {
state->vdop = msg.vdop * 100.0;
}
}
}
}
}
static void gnss_aux_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary>& msg)
{ gnss_aux_cb(msg, 0); }
static void gnss_aux_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary>& msg)
{ gnss_aux_cb(msg, 1); }
static void (*gnss_aux_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary>& msg)
= { gnss_aux_cb0, gnss_aux_cb1 };
static void magnetic_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength>& msg, uint8_t mgr)
{
if (hal.can_mgr[mgr] != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_UAVCAN::Mag_Info *state = ap_uavcan->find_mag_node(msg.getSrcNodeID().get(), 0);
if (state != nullptr) {
state->mag_vector[0] = msg.magnetic_field_ga[0];
state->mag_vector[1] = msg.magnetic_field_ga[1];
state->mag_vector[2] = msg.magnetic_field_ga[2];
// after all is filled, update all listeners with new data
ap_uavcan->update_mag_state(msg.getSrcNodeID().get(), 0);
}
}
}
}
static void magnetic_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength>& msg)
{ magnetic_cb(msg, 0); }
static void magnetic_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength>& msg)
{ magnetic_cb(msg, 1); }
static void (*magnetic_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength>& msg)
= { magnetic_cb0, magnetic_cb1 };
static void magnetic_cb_2(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength2>& msg, uint8_t mgr)
{
if (hal.can_mgr[mgr] != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_UAVCAN::Mag_Info *state = ap_uavcan->find_mag_node(msg.getSrcNodeID().get(), msg.sensor_id);
if (state != nullptr) {
state->mag_vector[0] = msg.magnetic_field_ga[0];
state->mag_vector[1] = msg.magnetic_field_ga[1];
state->mag_vector[2] = msg.magnetic_field_ga[2];
// after all is filled, update all listeners with new data
ap_uavcan->update_mag_state(msg.getSrcNodeID().get(), msg.sensor_id);
}
}
}
}
static void magnetic_cb_2_0(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength2>& msg)
{ magnetic_cb_2(msg, 0); }
static void magnetic_cb_2_1(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength2>& msg)
{ magnetic_cb_2(msg, 1); }
static void (*magnetic_cb_2_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength2>& msg)
= { magnetic_cb_2_0, magnetic_cb_2_1 };
static void air_data_sp_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticPressure>& msg, uint8_t mgr)
{
if (hal.can_mgr[mgr] != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_UAVCAN::Baro_Info *state = ap_uavcan->find_baro_node(msg.getSrcNodeID().get());
if (state != nullptr) {
state->pressure = msg.static_pressure;
state->pressure_variance = msg.static_pressure_variance;
// after all is filled, update all listeners with new data
ap_uavcan->update_baro_state(msg.getSrcNodeID().get());
}
}
}
}
static void air_data_sp_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticPressure>& msg)
{ air_data_sp_cb(msg, 0); }
static void air_data_sp_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticPressure>& msg)
{ air_data_sp_cb(msg, 1); }
static void (*air_data_sp_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticPressure>& msg)
= { air_data_sp_cb0, air_data_sp_cb1 };
// Temperature is not main parameter so do not update listeners when it is received
static void air_data_st_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticTemperature>& msg, uint8_t mgr)
{
if (hal.can_mgr[mgr] != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_UAVCAN::Baro_Info *state = ap_uavcan->find_baro_node(msg.getSrcNodeID().get());
if (state != nullptr) {
state->temperature = msg.static_temperature;
state->temperature_variance = msg.static_temperature_variance;
}
}
}
}
static void air_data_st_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticTemperature>& msg)
{ air_data_st_cb(msg, 0); }
static void air_data_st_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticTemperature>& msg)
{ air_data_st_cb(msg, 1); }
static void (*air_data_st_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticTemperature>& msg)
= { air_data_st_cb0, air_data_st_cb1 };
static void battery_info_st_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::power::BatteryInfo>& msg, uint8_t mgr)
{
if (hal.can_mgr[mgr] != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_UAVCAN::BatteryInfo_Info *state = ap_uavcan->find_bi_id((uint16_t) msg.battery_id);
if (state != nullptr) {
state->temperature = msg.temperature;
state->voltage = msg.voltage;
state->current = msg.current;
state->full_charge_capacity_wh = msg.full_charge_capacity_wh;
state->remaining_capacity_wh = msg.remaining_capacity_wh;
state->status_flags = msg.status_flags;
// after all is filled, update all listeners with new data
ap_uavcan->update_bi_state((uint16_t) msg.battery_id);
}
}
}
}
static void battery_info_st_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::power::BatteryInfo>& msg)
{ battery_info_st_cb(msg, 0); }
static void battery_info_st_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::power::BatteryInfo>& msg)
{ battery_info_st_cb(msg, 1); }
static void (*battery_info_st_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::power::BatteryInfo>& msg)
= { battery_info_st_cb0, battery_info_st_cb1 };
// publisher interfaces
static uavcan::Publisher<uavcan::equipment::actuator::ArrayCommand>* act_out_array[MAX_NUMBER_OF_CAN_DRIVERS];
static uavcan::Publisher<uavcan::equipment::esc::RawCommand>* esc_raw[MAX_NUMBER_OF_CAN_DRIVERS];
static uavcan::Publisher<uavcan::equipment::indication::LightsCommand>* rgb_led[MAX_NUMBER_OF_CAN_DRIVERS];
AP_UAVCAN::AP_UAVCAN() :
_node_allocator(
UAVCAN_NODE_POOL_SIZE, UAVCAN_NODE_POOL_SIZE)
{
AP_Param::setup_object_defaults(this, var_info);
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
_rco_conf[i].active = false;
}
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
_gps_nodes[i] = UINT8_MAX;
_gps_node_taken[i] = 0;
}
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
_baro_nodes[i] = UINT8_MAX;
_baro_node_taken[i] = 0;
}
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
_mag_nodes[i] = UINT8_MAX;
_mag_node_taken[i] = 0;
_mag_node_max_sensorid_count[i] = 1;
}
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
_gps_listener_to_node[i] = UINT8_MAX;
_gps_listeners[i] = nullptr;
_baro_listener_to_node[i] = UINT8_MAX;
_baro_listeners[i] = nullptr;
_mag_listener_to_node[i] = UINT8_MAX;
_mag_listeners[i] = nullptr;
_mag_listener_sensor_ids[i] = 0;
}
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
_bi_id[i] = UINT8_MAX;
_bi_id_taken[i] = 0;
_bi_BM_listener_to_id[i] = UINT8_MAX;
_bi_BM_listeners[i] = nullptr;
}
_rc_out_sem = hal.util->new_semaphore();
_led_out_sem = hal.util->new_semaphore();
debug_uavcan(2, "AP_UAVCAN constructed\n\r");
}
AP_UAVCAN::~AP_UAVCAN()
{
}
bool AP_UAVCAN::try_init(void)
{
if (_parent_can_mgr != nullptr) {
if (_parent_can_mgr->is_initialized() && !_initialized) {
_uavcan_i = UINT8_MAX;
for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++) {
if (_parent_can_mgr == hal.can_mgr[i]) {
_uavcan_i = i;
break;
}
}
if(_uavcan_i == UINT8_MAX) {
return false;
}
auto *node = get_node();
if (node != nullptr) {
if (!node->isStarted()) {
uavcan::NodeID self_node_id(_uavcan_node);
node->setNodeID(self_node_id);
char ndname[20];
snprintf(ndname, sizeof(ndname), "org.ardupilot:%u", _uavcan_i);
uavcan::NodeStatusProvider::NodeName name(ndname);
node->setName(name);
uavcan::protocol::SoftwareVersion sw_version; // Standard type uavcan.protocol.SoftwareVersion
sw_version.major = AP_UAVCAN_SW_VERS_MAJOR;
sw_version.minor = AP_UAVCAN_SW_VERS_MINOR;
node->setSoftwareVersion(sw_version);
uavcan::protocol::HardwareVersion hw_version; // Standard type uavcan.protocol.HardwareVersion
hw_version.major = AP_UAVCAN_HW_VERS_MAJOR;
hw_version.minor = AP_UAVCAN_HW_VERS_MINOR;
node->setHardwareVersion(hw_version);
const int node_start_res = node->start();
if (node_start_res < 0) {
debug_uavcan(1, "UAVCAN: node start problem\n\r");
}
uavcan::Subscriber<uavcan::equipment::gnss::Fix> *gnss_fix;
gnss_fix = new uavcan::Subscriber<uavcan::equipment::gnss::Fix>(*node);
const int gnss_fix_start_res = gnss_fix->start(gnss_fix_cb_arr[_uavcan_i]);
if (gnss_fix_start_res < 0) {
debug_uavcan(1, "UAVCAN GNSS subscriber start problem\n\r");
return false;
}
uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary> *gnss_aux;
gnss_aux = new uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary>(*node);
const int gnss_aux_start_res = gnss_aux->start(gnss_aux_cb_arr[_uavcan_i]);
if (gnss_aux_start_res < 0) {
debug_uavcan(1, "UAVCAN GNSS Aux subscriber start problem\n\r");
return false;
}
uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength> *magnetic;
magnetic = new uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength>(*node);
const int magnetic_start_res = magnetic->start(magnetic_cb_arr[_uavcan_i]);
if (magnetic_start_res < 0) {
debug_uavcan(1, "UAVCAN Compass subscriber start problem\n\r");
return false;
}
uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength2> *magnetic2;
magnetic2 = new uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength2>(*node);
const int magnetic_start_res_2 = magnetic2->start(magnetic_cb_2_arr[_uavcan_i]);
if (magnetic_start_res_2 < 0) {
debug_uavcan(1, "UAVCAN Compass for multiple mags subscriber start problem\n\r");
return false;
}
uavcan::Subscriber<uavcan::equipment::air_data::StaticPressure> *air_data_sp;
air_data_sp = new uavcan::Subscriber<uavcan::equipment::air_data::StaticPressure>(*node);
const int air_data_sp_start_res = air_data_sp->start(air_data_sp_cb_arr[_uavcan_i]);
if (air_data_sp_start_res < 0) {
debug_uavcan(1, "UAVCAN Baro subscriber start problem\n\r");
return false;
}
uavcan::Subscriber<uavcan::equipment::air_data::StaticTemperature> *air_data_st;
air_data_st = new uavcan::Subscriber<uavcan::equipment::air_data::StaticTemperature>(*node);
const int air_data_st_start_res = air_data_st->start(air_data_st_cb_arr[_uavcan_i]);
if (air_data_st_start_res < 0) {
debug_uavcan(1, "UAVCAN Temperature subscriber start problem\n\r");
return false;
}
uavcan::Subscriber<uavcan::equipment::power::BatteryInfo> *battery_info_st;
battery_info_st = new uavcan::Subscriber<uavcan::equipment::power::BatteryInfo>(*node);
const int battery_info_start_res = battery_info_st->start(battery_info_st_cb_arr[_uavcan_i]);
if (battery_info_start_res < 0) {
debug_uavcan(1, "UAVCAN BatteryInfo subscriber start problem\n\r");
return false;
}
act_out_array[_uavcan_i] = new uavcan::Publisher<uavcan::equipment::actuator::ArrayCommand>(*node);
act_out_array[_uavcan_i]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
act_out_array[_uavcan_i]->setPriority(uavcan::TransferPriority::OneLowerThanHighest);
esc_raw[_uavcan_i] = new uavcan::Publisher<uavcan::equipment::esc::RawCommand>(*node);
esc_raw[_uavcan_i]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
esc_raw[_uavcan_i]->setPriority(uavcan::TransferPriority::OneLowerThanHighest);
rgb_led[_uavcan_i] = new uavcan::Publisher<uavcan::equipment::indication::LightsCommand>(*node);
rgb_led[_uavcan_i]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
rgb_led[_uavcan_i]->setPriority(uavcan::TransferPriority::OneHigherThanLowest);
_led_conf.devices_count = 0;
/*
* Informing other nodes that we're ready to work.
* Default mode is INITIALIZING.
*/
node->setModeOperational();
_initialized = true;
debug_uavcan(1, "UAVCAN: init done\n\r");
return true;
}
}
}
if (_initialized) {
return true;
}
}
return false;
}
bool AP_UAVCAN::rc_out_sem_take()
{
bool sem_ret = _rc_out_sem->take(10);
if (!sem_ret) {
debug_uavcan(1, "AP_UAVCAN RCOut semaphore fail\n\r");
}
return sem_ret;
}
void AP_UAVCAN::rc_out_sem_give()
{
_rc_out_sem->give();
}
void AP_UAVCAN::rc_out_send_servos(void)
{
uint8_t starting_servo = 0;
bool repeat_send;
do {
repeat_send = false;
uavcan::equipment::actuator::ArrayCommand msg;
uint8_t i;
// UAVCAN can hold maximum of 15 commands in one frame
for (i = 0; starting_servo < UAVCAN_RCO_NUMBER && i < 15; starting_servo++) {
uavcan::equipment::actuator::Command cmd;
/*
* Servo output uses a range of 1000-2000 PWM for scaling.
* This converts output PWM from [1000:2000] range to [-1:1] range that
* is passed to servo as unitless type via UAVCAN.
* This approach allows for MIN/TRIM/MAX values to be used fully on
* autopilot side and for servo it should have the setup to provide maximum
* physically possible throws at [-1:1] limits.
*/
if (_rco_conf[starting_servo].active && ((((uint32_t) 1) << starting_servo) & _servo_bm)) {
cmd.actuator_id = starting_servo + 1;
// TODO: other types
cmd.command_type = uavcan::equipment::actuator::Command::COMMAND_TYPE_UNITLESS;
// TODO: failsafe, safety
cmd.command_value = constrain_float(((float) _rco_conf[starting_servo].pulse - 1000.0) / 500.0 - 1.0, -1.0, 1.0);
msg.commands.push_back(cmd);
i++;
}
}
if (i > 0) {
act_out_array[_uavcan_i]->broadcast(msg);
if (i == 15) {
repeat_send = true;
}
}
} while (repeat_send);
}
void AP_UAVCAN::rc_out_send_esc(void)
{
static const int cmd_max = uavcan::equipment::esc::RawCommand::FieldTypes::cmd::RawValueType::max();
uavcan::equipment::esc::RawCommand esc_msg;
uint8_t active_esc_num = 0, max_esc_num = 0;
uint8_t k = 0;
// find out how many esc we have enabled and if they are active at all
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
if ((((uint32_t) 1) << i) & _esc_bm) {
max_esc_num = i + 1;
if (_rco_conf[i].active) {
active_esc_num++;
}
}
}
// if at least one is active (update) we need to send to all
if (active_esc_num > 0) {
k = 0;
for (uint8_t i = 0; i < max_esc_num && k < 20; i++) {
uavcan::equipment::actuator::Command cmd;
if ((((uint32_t) 1) << i) & _esc_bm) {
// TODO: ESC negative scaling for reverse thrust and reverse rotation
float scaled = cmd_max * (hal.rcout->scale_esc_to_unity(_rco_conf[i].pulse) + 1.0) / 2.0;
scaled = constrain_float(scaled, 0, cmd_max);
esc_msg.cmd.push_back(static_cast<int>(scaled));
} else {
esc_msg.cmd.push_back(static_cast<unsigned>(0));
}
k++;
}
esc_raw[_uavcan_i]->broadcast(esc_msg);
}
}
void AP_UAVCAN::do_cyclic(void)
{
if (!_initialized) {
hal.scheduler->delay_microseconds(1000);
return;
}
auto *node = get_node();
const int error = node->spin(uavcan::MonotonicDuration::fromMSec(1));
if (error < 0) {
hal.scheduler->delay_microseconds(1000);
return;
}
if (rc_out_sem_take()) {
if (_rco_armed) {
// if we have any Servos in bitmask
if (_servo_bm > 0) {
rc_out_send_servos();
}
// if we have any ESC's in bitmask
if (_esc_bm > 0) {
rc_out_send_esc();
}
}
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
// mark as transmitted
_rco_conf[i].active = false;
}
rc_out_sem_give();
}
if (led_out_sem_take()) {
led_out_send();
led_out_sem_give();
}
}
bool AP_UAVCAN::led_out_sem_take()
{
bool sem_ret = _led_out_sem->take(10);
if (!sem_ret) {
debug_uavcan(1, "AP_UAVCAN LEDOut semaphore fail\n\r");
}
return sem_ret;
}
void AP_UAVCAN::led_out_sem_give()
{
_led_out_sem->give();
}
void AP_UAVCAN::led_out_send()
{
if (_led_conf.broadcast_enabled && ((AP_HAL::micros64() - _led_conf.last_update) > (AP_UAVCAN_LED_DELAY_MILLISECONDS * 1000))) {
uavcan::equipment::indication::LightsCommand msg;
uavcan::equipment::indication::SingleLightCommand cmd;
for (uint8_t i = 0; i < _led_conf.devices_count; i++) {
if (_led_conf.devices[i].enabled) {
cmd.light_id =_led_conf.devices[i].led_index;
cmd.color = _led_conf.devices[i].rgb565_color;
msg.commands.push_back(cmd);
}
}
rgb_led[_uavcan_i]->broadcast(msg);
_led_conf.last_update = AP_HAL::micros64();
}
}
uavcan::ISystemClock & AP_UAVCAN::get_system_clock()
{
return SystemClock::instance();
}
uavcan::ICanDriver * AP_UAVCAN::get_can_driver()
{
if (_parent_can_mgr != nullptr) {
if (_parent_can_mgr->is_initialized() == false) {
return nullptr;
} else {
return _parent_can_mgr->get_driver();
}
}
return nullptr;
}
uavcan::Node<0> *AP_UAVCAN::get_node()
{
if (_node == nullptr && get_can_driver() != nullptr) {
_node = new uavcan::Node<0>(*get_can_driver(), get_system_clock(), _node_allocator);
}
return _node;
}
void AP_UAVCAN::rco_set_safety_pwm(uint32_t chmask, uint16_t pulse_len)
{
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
if (chmask & (((uint32_t) 1) << i)) {
_rco_conf[i].safety_pulse = pulse_len;
}
}
}
void AP_UAVCAN::rco_set_failsafe_pwm(uint32_t chmask, uint16_t pulse_len)
{
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
if (chmask & (((uint32_t) 1) << i)) {
_rco_conf[i].failsafe_pulse = pulse_len;
}
}
}
void AP_UAVCAN::rco_force_safety_on(void)
{
_rco_safety = true;
}
void AP_UAVCAN::rco_force_safety_off(void)
{
_rco_safety = false;
}
void AP_UAVCAN::rco_arm_actuators(bool arm)
{
_rco_armed = arm;
}
void AP_UAVCAN::rco_write(uint16_t pulse_len, uint8_t ch)
{
_rco_conf[ch].pulse = pulse_len;
_rco_conf[ch].active = true;
}
uint8_t AP_UAVCAN::find_gps_without_listener(void)
{
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_gps_listeners[i] == nullptr && _gps_nodes[i] != UINT8_MAX) {
return _gps_nodes[i];
}
}
return UINT8_MAX;
}
uint8_t AP_UAVCAN::register_gps_listener(AP_GPS_Backend* new_listener, uint8_t preferred_channel)
{
uint8_t sel_place = UINT8_MAX, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_gps_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != UINT8_MAX) {
if (preferred_channel != 0) {
if (preferred_channel <= AP_UAVCAN_MAX_GPS_NODES) {
_gps_listeners[sel_place] = new_listener;
_gps_listener_to_node[sel_place] = preferred_channel - 1;
_gps_node_taken[_gps_listener_to_node[sel_place]]++;
ret = preferred_channel;
debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, preferred_channel);
}
} else {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
if (_gps_node_taken[i] == 0) {
_gps_listeners[sel_place] = new_listener;
_gps_listener_to_node[sel_place] = i;
_gps_node_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
}
return ret;
}
uint8_t AP_UAVCAN::register_gps_listener_to_node(AP_GPS_Backend* new_listener, uint8_t node)
{
uint8_t sel_place = UINT8_MAX, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_gps_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != UINT8_MAX) {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
if (_gps_nodes[i] == node) {
_gps_listeners[sel_place] = new_listener;
_gps_listener_to_node[sel_place] = i;
_gps_node_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
return ret;
}
void AP_UAVCAN::remove_gps_listener(AP_GPS_Backend* rem_listener)
{
// Check for all listeners and compare pointers
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_gps_listeners[i] == rem_listener) {
_gps_listeners[i] = nullptr;
// Also decrement usage counter and reset listening node
if (_gps_node_taken[_gps_listener_to_node[i]] > 0) {
_gps_node_taken[_gps_listener_to_node[i]]--;
}
_gps_listener_to_node[i] = UINT8_MAX;
}
}
}
AP_GPS::GPS_State *AP_UAVCAN::find_gps_node(uint8_t node)
{
// Check if such node is already defined
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
if (_gps_nodes[i] == node) {
return &_gps_node_state[i];
}
}
// If not - try to find free space for it
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
if (_gps_nodes[i] == UINT8_MAX) {
_gps_nodes[i] = node;
return &_gps_node_state[i];
}
}
// If no space is left - return nullptr
return nullptr;
}
void AP_UAVCAN::update_gps_state(uint8_t node)
{
// Go through all listeners of specified node and call their's update methods
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
if (_gps_nodes[i] == node) {
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
if (_gps_listener_to_node[j] == i) {
_gps_listeners[j]->handle_gnss_msg(_gps_node_state[i]);
}
}
}
}
}
uint8_t AP_UAVCAN::register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel)
{
uint8_t sel_place = UINT8_MAX, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_baro_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != UINT8_MAX) {
if (preferred_channel != 0) {
if (preferred_channel < AP_UAVCAN_MAX_BARO_NODES) {
_baro_listeners[sel_place] = new_listener;
_baro_listener_to_node[sel_place] = preferred_channel - 1;
_baro_node_taken[_baro_listener_to_node[sel_place]]++;
ret = preferred_channel;
debug_uavcan(2, "reg_Baro place:%d, chan: %d\n\r", sel_place, preferred_channel);
}
} else {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_node_taken[i] == 0) {
_baro_listeners[sel_place] = new_listener;
_baro_listener_to_node[sel_place] = i;
_baro_node_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_BARO place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
}
return ret;
}
uint8_t AP_UAVCAN::register_baro_listener_to_node(AP_Baro_Backend* new_listener, uint8_t node)
{
uint8_t sel_place = UINT8_MAX, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_baro_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != UINT8_MAX) {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_nodes[i] == node) {
_baro_listeners[sel_place] = new_listener;
_baro_listener_to_node[sel_place] = i;
_baro_node_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_BARO place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
return ret;
}
void AP_UAVCAN::remove_baro_listener(AP_Baro_Backend* rem_listener)
{
// Check for all listeners and compare pointers
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_baro_listeners[i] == rem_listener) {
_baro_listeners[i] = nullptr;
// Also decrement usage counter and reset listening node
if (_baro_node_taken[_baro_listener_to_node[i]] > 0) {
_baro_node_taken[_baro_listener_to_node[i]]--;
}
_baro_listener_to_node[i] = UINT8_MAX;
}
}
}
AP_UAVCAN::Baro_Info *AP_UAVCAN::find_baro_node(uint8_t node)
{
// Check if such node is already defined
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_nodes[i] == node) {
return &_baro_node_state[i];
}
}
// If not - try to find free space for it
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_nodes[i] == UINT8_MAX) {
_baro_nodes[i] = node;
return &_baro_node_state[i];
}
}
// If no space is left - return nullptr
return nullptr;
}
void AP_UAVCAN::update_baro_state(uint8_t node)
{
// Go through all listeners of specified node and call their's update methods
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_nodes[i] == node) {
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
if (_baro_listener_to_node[j] == i) {
_baro_listeners[j]->handle_baro_msg(_baro_node_state[i].pressure, _baro_node_state[i].temperature);
}
}
}
}
}
/*
* Find discovered not taken baro node with smallest node ID
*/
uint8_t AP_UAVCAN::find_smallest_free_baro_node()
{
uint8_t ret = UINT8_MAX;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_node_taken[i] == 0) {
ret = MIN(ret, _baro_nodes[i]);
}
}
return ret;
}
uint8_t AP_UAVCAN::register_mag_listener(AP_Compass_Backend* new_listener, uint8_t preferred_channel)
{
uint8_t sel_place = UINT8_MAX, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_mag_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != UINT8_MAX) {
if (preferred_channel != 0) {
if (preferred_channel < AP_UAVCAN_MAX_MAG_NODES) {
_mag_listeners[sel_place] = new_listener;
_mag_listener_to_node[sel_place] = preferred_channel - 1;
_mag_node_taken[_mag_listener_to_node[sel_place]]++;
ret = preferred_channel;
debug_uavcan(2, "reg_Compass place:%d, chan: %d\n\r", sel_place, preferred_channel);
}
} else {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_node_taken[i] == 0) {
_mag_listeners[sel_place] = new_listener;
_mag_listener_to_node[sel_place] = i;
_mag_node_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_MAG place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
}
return ret;
}
uint8_t AP_UAVCAN::register_mag_listener_to_node(AP_Compass_Backend* new_listener, uint8_t node)
{
uint8_t sel_place = UINT8_MAX, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_mag_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != UINT8_MAX) {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_nodes[i] == node) {
_mag_listeners[sel_place] = new_listener;
_mag_listener_to_node[sel_place] = i;
_mag_listener_sensor_ids[sel_place] = 0;
_mag_node_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_MAG place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
return ret;
}
void AP_UAVCAN::remove_mag_listener(AP_Compass_Backend* rem_listener)
{
// Check for all listeners and compare pointers
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_mag_listeners[i] == rem_listener) {
_mag_listeners[i] = nullptr;
// Also decrement usage counter and reset listening node
if (_mag_node_taken[_mag_listener_to_node[i]] > 0) {
_mag_node_taken[_mag_listener_to_node[i]]--;
}
_mag_listener_to_node[i] = UINT8_MAX;
}
}
}
AP_UAVCAN::Mag_Info *AP_UAVCAN::find_mag_node(uint8_t node, uint8_t sensor_id)
{
// Check if such node is already defined
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_nodes[i] == node) {
if (_mag_node_max_sensorid_count[i] < sensor_id) {
_mag_node_max_sensorid_count[i] = sensor_id;
debug_uavcan(2, "AP_UAVCAN: Compass: found sensor id %d on node %d\n\r", (int)(sensor_id), (int)(node));
}
return &_mag_node_state[i];
}
}
// If not - try to find free space for it
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_nodes[i] == UINT8_MAX) {
_mag_nodes[i] = node;
_mag_node_max_sensorid_count[i] = (sensor_id ? sensor_id : 1);
debug_uavcan(2, "AP_UAVCAN: Compass: register sensor id %d on node %d\n\r", (int)(sensor_id), (int)(node));
return &_mag_node_state[i];
}
}
// If no space is left - return nullptr
return nullptr;
}
/*
* Find discovered mag node with smallest node ID and which is taken N times,
* where N is less than its maximum sensor id.
* This allows multiple AP_Compass_UAVCAN instanses listening multiple compasses
* that are on one node.
*/
uint8_t AP_UAVCAN::find_smallest_free_mag_node()
{
uint8_t ret = UINT8_MAX;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_node_taken[i] < _mag_node_max_sensorid_count[i]) {
ret = MIN(ret, _mag_nodes[i]);
}
}
return ret;
}
void AP_UAVCAN::update_mag_state(uint8_t node, uint8_t sensor_id)
{
// Go through all listeners of specified node and call their's update methods
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_nodes[i] == node) {
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
if (_mag_listener_to_node[j] == i) {
/*If the current listener has default sensor_id,
while our sensor_id is not default, we have
to assign our sensor_id to this listener*/
if ((_mag_listener_sensor_ids[j] == 0) && (sensor_id != 0)) {
bool already_taken = false;
for (uint8_t k = 0; k < AP_UAVCAN_MAX_LISTENERS; k++) {
if (_mag_listener_sensor_ids[k] == sensor_id) {
already_taken = true;
}
}
if (!already_taken) {
debug_uavcan(2, "AP_UAVCAN: Compass: sensor_id updated to %d for listener %d\n", sensor_id, j);
_mag_listener_sensor_ids[j] = sensor_id;
}
}
/*If the current listener has the sensor_id that we have,
or our sensor_id is default, ask the listener to handle the measurements
(the default one is used for the nodes that have only one compass*/
if ((sensor_id == 0) || (_mag_listener_sensor_ids[j] == sensor_id)) {
_mag_listeners[j]->handle_mag_msg(_mag_node_state[i].mag_vector);
}
}
}
}
}
}
uint8_t AP_UAVCAN::register_BM_bi_listener_to_id(AP_BattMonitor_Backend* new_listener, uint8_t id)
{
uint8_t sel_place = UINT8_MAX, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_bi_BM_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != UINT8_MAX) {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
if (_bi_id[i] == id) {
_bi_BM_listeners[sel_place] = new_listener;
_bi_BM_listener_to_id[sel_place] = i;
_bi_id_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_BI place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
return ret;
}
void AP_UAVCAN::remove_BM_bi_listener(AP_BattMonitor_Backend* rem_listener)
{
// Check for all listeners and compare pointers
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_bi_BM_listeners[i] == rem_listener) {
_bi_BM_listeners[i] = nullptr;
// Also decrement usage counter and reset listening node
if (_bi_id_taken[_bi_BM_listener_to_id[i]] > 0) {
_bi_id_taken[_bi_BM_listener_to_id[i]]--;
}
_bi_BM_listener_to_id[i] = UINT8_MAX;
}
}
}
AP_UAVCAN::BatteryInfo_Info *AP_UAVCAN::find_bi_id(uint8_t id)
{
// Check if such node is already defined
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
if (_bi_id[i] == id) {
return &_bi_id_state[i];
}
}
// If not - try to find free space for it
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
if (_bi_id[i] == UINT8_MAX) {
_bi_id[i] = id;
return &_bi_id_state[i];
}
}
// If no space is left - return nullptr
return nullptr;
}
uint8_t AP_UAVCAN::find_smallest_free_bi_id()
{
uint8_t ret = UINT8_MAX;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
if (_bi_id_taken[i] == 0) {
ret = MIN(ret, _bi_id[i]);
}
}
return ret;
}
void AP_UAVCAN::update_bi_state(uint8_t id)
{
// Go through all listeners of specified node and call their's update methods
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
if (_bi_id[i] == id) {
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
if (_bi_BM_listener_to_id[j] == i) {
_bi_BM_listeners[j]->handle_bi_msg(_bi_id_state[i].voltage, _bi_id_state[i].current, _bi_id_state[i].temperature);
}
}
}
}
}
bool AP_UAVCAN::led_write(uint8_t led_index, uint8_t red, uint8_t green, uint8_t blue) {
if (_led_conf.devices_count >= AP_UAVCAN_MAX_LED_DEVICES) {
return false;
}
if (!led_out_sem_take()) {
return false;
}
uavcan::equipment::indication::RGB565 color;
color.red = (red >> 3);
color.green = (green >> 2);
color.blue = (blue >> 3);
// check if a device instance exists. if so, break so the instance index is remembered
uint8_t instance = 0;
for (; instance < _led_conf.devices_count; instance++) {
if (!_led_conf.devices[instance].enabled || (_led_conf.devices[instance].led_index == led_index)) {
break;
}
}
// load into the correct instance.
// if an existing instance was found in above for loop search,
// then instance value is < _led_conf.devices_count.
// otherwise a new one was just found so we increment the count.
// Either way, the correct instance is the cirrent value of instance
_led_conf.devices[instance].led_index = led_index;
_led_conf.devices[instance].rgb565_color = color;
_led_conf.devices[instance].enabled = true;
if (instance == _led_conf.devices_count) {
_led_conf.devices_count++;
}
_led_conf.broadcast_enabled = true;
led_out_sem_give();
return true;
}
AP_UAVCAN *AP_UAVCAN::get_uavcan(uint8_t iface)
{
if (iface >= MAX_NUMBER_OF_CAN_INTERFACES || !hal.can_mgr[iface]) {
return nullptr;
}
return hal.can_mgr[iface]->get_UAVCAN();
}
#endif // HAL_WITH_UAVCAN