ardupilot/ArduSub/motors.cpp

228 lines
7.2 KiB
C++

#include "Sub.h"
#define ARM_DELAY 20 // called at 10hz so 2 seconds
#define DISARM_DELAY 20 // called at 10hz so 2 seconds
#define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds
#define LOST_VEHICLE_DELAY 10 // called at 10hz so 1 second
//static uint32_t auto_disarm_begin;
// auto_disarm_check
// Automatically disarm the vehicle under some set of conditions
// What those conditions should be TBD
void Sub::auto_disarm_check()
{
// Disable for now
// uint32_t tnow_ms = millis();
// uint32_t disarm_delay_ms = 1000*constrain_int16(g.disarm_delay, 0, 127);
//
// // exit immediately if we are already disarmed, or if auto
// // disarming is disabled
// if (!motors.armed() || disarm_delay_ms == 0) {
// auto_disarm_begin = tnow_ms;
// return;
// }
//
// if(!mode_has_manual_throttle(control_mode) || !ap.throttle_zero) {
// auto_disarm_begin = tnow_ms;
// }
//
// if(tnow > auto_disarm_begin + disarm_delay_ms) {
// init_disarm_motors();
// auto_disarm_begin = tnow_ms;
// }
}
// init_arm_motors - performs arming process including initialisation of barometer and gyros
// returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure
bool Sub::init_arm_motors(bool arming_from_gcs)
{
static bool in_arm_motors = false;
// exit immediately if already in this function
if (in_arm_motors) {
return false;
}
in_arm_motors = true;
// run pre-arm-checks and display failures
if (!all_arming_checks_passing(arming_from_gcs)) {
AP_Notify::events.arming_failed = true;
in_arm_motors = false;
return false;
}
// disable cpu failsafe because initialising everything takes a while
failsafe_disable();
// reset battery failsafe
set_failsafe_battery(false);
// notify that arming will occur (we do this early to give plenty of warning)
AP_Notify::flags.armed = true;
// call update_notify a few times to ensure the message gets out
for (uint8_t i=0; i<=10; i++) {
update_notify();
}
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs_send_text(MAV_SEVERITY_INFO, "Arming motors");
#endif
// Remember Orientation
// --------------------
init_simple_bearing();
initial_armed_bearing = ahrs.yaw_sensor;
if (ap.home_state == HOME_UNSET) {
// Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home)
// Always use absolute altitude for ROV
// ahrs.resetHeightDatum();
// Log_Write_Event(DATA_EKF_ALT_RESET);
} else if (ap.home_state == HOME_SET_NOT_LOCKED) {
// Reset home position if it has already been set before (but not locked)
set_home_to_current_location();
}
calc_distance_and_bearing();
// enable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(true);
hal.util->set_soft_armed(true);
// enable output to motors
enable_motor_output();
// finally actually arm the motors
motors.armed(true);
// log arming to dataflash
Log_Write_Event(DATA_ARMED);
// log flight mode in case it was changed while vehicle was disarmed
DataFlash.Log_Write_Mode(control_mode, control_mode_reason);
// reenable failsafe
failsafe_enable();
// perf monitor ignores delay due to arming
perf_ignore_this_loop();
// flag exiting this function
in_arm_motors = false;
// return success
return true;
}
// init_disarm_motors - disarm motors
void Sub::init_disarm_motors()
{
// return immediately if we are already disarmed
if (!motors.armed()) {
return;
}
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs_send_text(MAV_SEVERITY_INFO, "Disarming motors");
#endif
// save compass offsets learned by the EKF if enabled
if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) {
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
Vector3f magOffsets;
if (ahrs.getMagOffsets(i, magOffsets)) {
compass.set_and_save_offsets(i, magOffsets);
}
}
}
#if AUTOTUNE_ENABLED == ENABLED
// save auto tuned parameters
autotune_save_tuning_gains();
#endif
// log disarm to the dataflash
Log_Write_Event(DATA_DISARMED);
// send disarm command to motors
motors.armed(false);
// reset the mission
mission.reset();
// suspend logging
if (!DataFlash.log_while_disarmed()) {
DataFlash.EnableWrites(false);
}
// disable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(false);
hal.util->set_soft_armed(false);
}
// motors_output - send output to motors library which will adjust and send to ESCs and servos
void Sub::motors_output()
{
// check if we are performing the motor test
if (ap.motor_test) {
motor_test_output();
} else {
if (!ap.using_interlock) {
// if not using interlock switch, set according to Emergency Stop status
// where Emergency Stop is forced false during arming if Emergency Stop switch
// is not used. Interlock enabled means motors run, so we must
// invert motor_emergency_stop status for motors to run.
motors.set_interlock(!ap.motor_emergency_stop);
}
motors.output();
}
}
// check for pilot stick input to trigger lost vehicle alarm
void Sub::lost_vehicle_check()
{
static uint8_t soundalarm_counter;
// disable if aux switch is setup to vehicle alarm as the two could interfere
if (check_if_auxsw_mode_used(AUXSW_LOST_VEHICLE_SOUND)) {
return;
}
// ensure throttle is down, motors not armed, pitch and roll rc at max. Note: rc1=roll rc2=pitch
if (ap.throttle_zero && !motors.armed() && (channel_roll->get_control_in() > 4000) && (channel_pitch->get_control_in() > 4000)) {
if (soundalarm_counter >= LOST_VEHICLE_DELAY) {
if (AP_Notify::flags.vehicle_lost == false) {
AP_Notify::flags.vehicle_lost = true;
gcs_send_text(MAV_SEVERITY_NOTICE,"Locate vehicle alarm");
}
} else {
soundalarm_counter++;
}
} else {
soundalarm_counter = 0;
if (AP_Notify::flags.vehicle_lost == true) {
AP_Notify::flags.vehicle_lost = false;
}
}
}
// translate wpnav roll/pitch outputs to lateral/forward
void Sub::translate_wpnav_rp(float &lateral_out, float &forward_out)
{
// get roll and pitch targets in centidegrees
int32_t lateral = wp_nav.get_roll();
int32_t forward = -wp_nav.get_pitch(); // output is reversed
// constrain target forward/lateral values
// The outputs of wp_nav.get_roll and get_pitch should already be constrained to these values
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
// Normalize
lateral_out = (float)lateral/(float)aparm.angle_max;
forward_out = (float)forward/(float)aparm.angle_max;
}