mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
20923da23a
Eliminate the use of horizontal position states during non-aiding operation to make it easier to tune. Explicitly set the horizontal position associated Kalman gains to zero and the coresponding covariance entries to zero after avery fusion operation. Make the horizontal velocity observation noise used during non-aiding operation adjustable. Use a fixed value of velocity noise during initial alignment so that the flight peformance can be tuned without affecting the initial alignment.
926 lines
47 KiB
C++
926 lines
47 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
|
|
#include "AP_NavEKF2.h"
|
|
#include "AP_NavEKF2_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/********************************************************
|
|
* RESET FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// Control reset of yaw and magnetic field states
|
|
void NavEKF2_core::controlMagYawReset()
|
|
{
|
|
// Use a quaternion division to calcualte the delta quaternion between the rotation at the current and last time
|
|
Quaternion deltaQuat = stateStruct.quat / prevQuatMagReset;
|
|
prevQuatMagReset = stateStruct.quat;
|
|
// convert the quaternion to a rotation vector and find its length
|
|
Vector3f deltaRotVec;
|
|
deltaQuat.to_axis_angle(deltaRotVec);
|
|
float deltaRot = deltaRotVec.length();
|
|
|
|
// In-Flight reset for vehicle that cannot use a zero sideslip assumption
|
|
// Monitor the gain in height and reset the magnetic field states and heading when initial altitude has been gained
|
|
// This is done to prevent magnetic field distoration from steel roofs and adjacent structures causing bad earth field and initial yaw values
|
|
// Delay if rotated too far since the last check as rapid rotations will produce errors in the magnetic field states
|
|
if (!assume_zero_sideslip() && inFlight && !firstMagYawInit && (stateStruct.position.z - posDownAtTakeoff) < -5.0f && deltaRot < 0.1745f) {
|
|
firstMagYawInit = true;
|
|
// reset the timer used to prevent magnetometer fusion from affecting attitude until initial field learning is complete
|
|
magFuseTiltInhibit_ms = imuSampleTime_ms;
|
|
// Update the yaw angle and earth field states using the magnetic field measurements
|
|
Quaternion tempQuat;
|
|
Vector3f eulerAngles;
|
|
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
|
|
tempQuat = stateStruct.quat;
|
|
stateStruct.quat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
|
// calculate the change in the quaternion state and apply it to the ouput history buffer
|
|
tempQuat = stateStruct.quat/tempQuat;
|
|
StoreQuatRotate(tempQuat);
|
|
}
|
|
|
|
// In-Flight reset for vehicles that can use a zero sideslip assumption (Planes)
|
|
// this is done to protect against unrecoverable heading alignment errors due to compass faults
|
|
if (assume_zero_sideslip() && inFlight && !firstMagYawInit) {
|
|
alignYawGPS();
|
|
firstMagYawInit = true;
|
|
}
|
|
|
|
// inhibit the 3-axis mag fusion from modifying the tilt states for the first few seconds after a mag field reset
|
|
// to allow the mag states to converge and prevent disturbances in roll and pitch.
|
|
if (imuSampleTime_ms - magFuseTiltInhibit_ms < 5000) {
|
|
magFuseTiltInhibit = true;
|
|
} else {
|
|
magFuseTiltInhibit = false;
|
|
}
|
|
|
|
}
|
|
|
|
// this function is used to do a forced alignment of the yaw angle to align with the horizontal velocity
|
|
// vector from GPS. It is used to align the yaw angle after launch or takeoff.
|
|
void NavEKF2_core::alignYawGPS()
|
|
{
|
|
// get quaternion from existing filter states and calculate roll, pitch and yaw angles
|
|
Vector3f eulerAngles;
|
|
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
|
|
|
|
if ((sq(gpsDataDelayed.vel.x) + sq(gpsDataDelayed.vel.y)) > 25.0f) {
|
|
|
|
// calculate course yaw angle
|
|
float velYaw = atan2f(stateStruct.velocity.y,stateStruct.velocity.x);
|
|
|
|
// calculate course yaw angle from GPS velocity
|
|
float gpsYaw = atan2f(gpsDataNew.vel.y,gpsDataNew.vel.x);
|
|
|
|
// Check the yaw angles for consistency
|
|
float yawErr = MAX(fabsf(wrap_PI(gpsYaw - velYaw)),MAX(fabsf(wrap_PI(gpsYaw - eulerAngles.z)),fabsf(wrap_PI(velYaw - eulerAngles.z))));
|
|
|
|
// If the angles disagree by more than 45 degrees and GPS innovations are large, we declare the magnetic yaw as bad
|
|
badMagYaw = ((yawErr > 0.7854f) && (velTestRatio > 1.0f));
|
|
|
|
// correct yaw angle using GPS ground course compass failed or if not previously aligned
|
|
if (badMagYaw) {
|
|
|
|
// calculate new filter quaternion states from Euler angles
|
|
stateStruct.quat.from_euler(eulerAngles.x, eulerAngles.y, gpsYaw);
|
|
|
|
// The correlations between attitude errors and positon and velocity errors in the covariance matrix
|
|
// are invalid becasue og the changed yaw angle, so reset the corresponding row and columns
|
|
zeroCols(P,0,2);
|
|
zeroRows(P,0,2);
|
|
|
|
// Set the initial attitude error covariances
|
|
P[1][1] = P[0][0] = sq(radians(5.0f));
|
|
P[2][2] = sq(radians(45.0f));
|
|
|
|
// reset tposition fusion timer to casue the states to be reset to the GPS on the next GPS fusion cycle
|
|
lastPosPassTime_ms = 0;
|
|
}
|
|
}
|
|
// reset the magnetometer field states - we could have got bad external interference when initialising on-ground
|
|
calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
|
|
|
// We shoud retry the primary magnetoemter if previously switched or failed
|
|
magSelectIndex = 0;
|
|
allMagSensorsFailed = false;
|
|
}
|
|
|
|
/********************************************************
|
|
* FUSE MEASURED_DATA *
|
|
********************************************************/
|
|
|
|
// select fusion of magnetometer data
|
|
void NavEKF2_core::SelectMagFusion()
|
|
{
|
|
// start performance timer
|
|
hal.util->perf_begin(_perf_FuseMagnetometer);
|
|
|
|
// clear the flag that lets other processes know that the expensive magnetometer fusion operation has been perfomred on that time step
|
|
// used for load levelling
|
|
magFusePerformed = false;
|
|
|
|
// check for and read new magnetometer measurements
|
|
readMagData();
|
|
|
|
// If we are using the compass and the magnetometer has been unhealthy for too long we declare a timeout
|
|
if (magHealth) {
|
|
magTimeout = false;
|
|
lastHealthyMagTime_ms = imuSampleTime_ms;
|
|
} else if ((imuSampleTime_ms - lastHealthyMagTime_ms) > frontend->magFailTimeLimit_ms && use_compass()) {
|
|
magTimeout = true;
|
|
}
|
|
|
|
// check for availability of magnetometer data to fuse
|
|
magDataToFuse = storedMag.recall(magDataDelayed,imuDataDelayed.time_ms);
|
|
|
|
if (magDataToFuse) {
|
|
// Control reset of yaw and magnetic field states
|
|
controlMagYawReset();
|
|
}
|
|
|
|
// determine if conditions are right to start a new fusion cycle
|
|
// wait until the EKF time horizon catches up with the measurement
|
|
bool dataReady = (magDataToFuse && statesInitialised && use_compass() && yawAlignComplete);
|
|
if (dataReady) {
|
|
// If we haven't performed the first airborne magnetic field update or have inhibited magnetic field learning, then we use the simple method of declination to maintain heading
|
|
if(inhibitMagStates) {
|
|
fuseCompass();
|
|
// zero the test ratio output from the inactive 3-axis magneteometer fusion
|
|
magTestRatio.zero();
|
|
} else {
|
|
// if we are not doing aiding with earth relative observations (eg GPS) then the declination is
|
|
// maintained by fusing declination as a synthesised observation
|
|
if (PV_AidingMode != AID_ABSOLUTE || (imuSampleTime_ms - lastPosPassTime_ms) > 4000) {
|
|
FuseDeclination();
|
|
}
|
|
// fuse the three magnetometer componenents sequentially
|
|
for (mag_state.obsIndex = 0; mag_state.obsIndex <= 2; mag_state.obsIndex++) {
|
|
hal.util->perf_begin(_perf_test[0]);
|
|
FuseMagnetometer();
|
|
hal.util->perf_end(_perf_test[0]);
|
|
// don't continue fusion if unhealthy
|
|
if (!magHealth) {
|
|
break;
|
|
}
|
|
}
|
|
// zero the test ratio output from the inactive simple magnetometer yaw fusion
|
|
yawTestRatio = 0.0f;
|
|
}
|
|
}
|
|
|
|
// stop performance timer
|
|
hal.util->perf_end(_perf_FuseMagnetometer);
|
|
}
|
|
|
|
/*
|
|
* Fuse magnetometer measurements using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
|
|
*/
|
|
void NavEKF2_core::FuseMagnetometer()
|
|
{
|
|
hal.util->perf_begin(_perf_test[1]);
|
|
|
|
// declarations
|
|
ftype &q0 = mag_state.q0;
|
|
ftype &q1 = mag_state.q1;
|
|
ftype &q2 = mag_state.q2;
|
|
ftype &q3 = mag_state.q3;
|
|
ftype &magN = mag_state.magN;
|
|
ftype &magE = mag_state.magE;
|
|
ftype &magD = mag_state.magD;
|
|
ftype &magXbias = mag_state.magXbias;
|
|
ftype &magYbias = mag_state.magYbias;
|
|
ftype &magZbias = mag_state.magZbias;
|
|
uint8_t &obsIndex = mag_state.obsIndex;
|
|
Matrix3f &DCM = mag_state.DCM;
|
|
Vector3f &MagPred = mag_state.MagPred;
|
|
ftype &R_MAG = mag_state.R_MAG;
|
|
ftype *SH_MAG = &mag_state.SH_MAG[0];
|
|
Vector24 H_MAG;
|
|
Vector6 SK_MX;
|
|
Vector6 SK_MY;
|
|
Vector6 SK_MZ;
|
|
|
|
hal.util->perf_end(_perf_test[1]);
|
|
|
|
// perform sequential fusion of magnetometer measurements.
|
|
// this assumes that the errors in the different components are
|
|
// uncorrelated which is not true, however in the absence of covariance
|
|
// data fit is the only assumption we can make
|
|
// so we might as well take advantage of the computational efficiencies
|
|
// associated with sequential fusion
|
|
// calculate observation jacobians and Kalman gains
|
|
if (obsIndex == 0)
|
|
{
|
|
|
|
hal.util->perf_begin(_perf_test[2]);
|
|
|
|
// copy required states to local variable names
|
|
q0 = stateStruct.quat[0];
|
|
q1 = stateStruct.quat[1];
|
|
q2 = stateStruct.quat[2];
|
|
q3 = stateStruct.quat[3];
|
|
magN = stateStruct.earth_magfield[0];
|
|
magE = stateStruct.earth_magfield[1];
|
|
magD = stateStruct.earth_magfield[2];
|
|
magXbias = stateStruct.body_magfield[0];
|
|
magYbias = stateStruct.body_magfield[1];
|
|
magZbias = stateStruct.body_magfield[2];
|
|
|
|
// rotate predicted earth components into body axes and calculate
|
|
// predicted measurements
|
|
DCM[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3;
|
|
DCM[0][1] = 2.0f*(q1*q2 + q0*q3);
|
|
DCM[0][2] = 2.0f*(q1*q3-q0*q2);
|
|
DCM[1][0] = 2.0f*(q1*q2 - q0*q3);
|
|
DCM[1][1] = q0*q0 - q1*q1 + q2*q2 - q3*q3;
|
|
DCM[1][2] = 2.0f*(q2*q3 + q0*q1);
|
|
DCM[2][0] = 2.0f*(q1*q3 + q0*q2);
|
|
DCM[2][1] = 2.0f*(q2*q3 - q0*q1);
|
|
DCM[2][2] = q0*q0 - q1*q1 - q2*q2 + q3*q3;
|
|
MagPred[0] = DCM[0][0]*magN + DCM[0][1]*magE + DCM[0][2]*magD + magXbias;
|
|
MagPred[1] = DCM[1][0]*magN + DCM[1][1]*magE + DCM[1][2]*magD + magYbias;
|
|
MagPred[2] = DCM[2][0]*magN + DCM[2][1]*magE + DCM[2][2]*magD + magZbias;
|
|
|
|
// calculate the measurement innovation for each axis
|
|
for (uint8_t i = 0; i<=2; i++) {
|
|
innovMag[i] = MagPred[i] - magDataDelayed.mag[i];
|
|
}
|
|
|
|
// scale magnetometer observation error with total angular rate to allow for timing errors
|
|
R_MAG = sq(constrain_float(frontend->_magNoise, 0.01f, 0.5f)) + sq(frontend->magVarRateScale*imuDataDelayed.delAng.length() / imuDataDelayed.delAngDT);
|
|
|
|
// calculate common expressions used to calculate observation jacobians an innovation variance for each component
|
|
SH_MAG[0] = sq(q0) - sq(q1) + sq(q2) - sq(q3);
|
|
SH_MAG[1] = sq(q0) + sq(q1) - sq(q2) - sq(q3);
|
|
SH_MAG[2] = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
|
SH_MAG[3] = 2.0f*q0*q1 + 2.0f*q2*q3;
|
|
SH_MAG[4] = 2.0f*q0*q3 + 2.0f*q1*q2;
|
|
SH_MAG[5] = 2.0f*q0*q2 + 2.0f*q1*q3;
|
|
SH_MAG[6] = magE*(2.0f*q0*q1 - 2.0f*q2*q3);
|
|
SH_MAG[7] = 2.0f*q1*q3 - 2.0f*q0*q2;
|
|
SH_MAG[8] = 2.0f*q0*q3;
|
|
|
|
// Calculate the innovation variance for each axis
|
|
// X axis
|
|
varInnovMag[0] = (P[19][19] + R_MAG - P[1][19]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][19]*SH_MAG[1] + P[17][19]*SH_MAG[4] + P[18][19]*SH_MAG[7] + P[2][19]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) - (magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5])*(P[19][1] - P[1][1]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][1]*SH_MAG[1] + P[17][1]*SH_MAG[4] + P[18][1]*SH_MAG[7] + P[2][1]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + SH_MAG[1]*(P[19][16] - P[1][16]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][16]*SH_MAG[1] + P[17][16]*SH_MAG[4] + P[18][16]*SH_MAG[7] + P[2][16]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + SH_MAG[4]*(P[19][17] - P[1][17]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][17]*SH_MAG[1] + P[17][17]*SH_MAG[4] + P[18][17]*SH_MAG[7] + P[2][17]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + SH_MAG[7]*(P[19][18] - P[1][18]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][18]*SH_MAG[1] + P[17][18]*SH_MAG[4] + P[18][18]*SH_MAG[7] + P[2][18]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + (magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))*(P[19][2] - P[1][2]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][2]*SH_MAG[1] + P[17][2]*SH_MAG[4] + P[18][2]*SH_MAG[7] + P[2][2]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))));
|
|
if (varInnovMag[0] >= R_MAG) {
|
|
faultStatus.bad_xmag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
obsIndex = 1;
|
|
faultStatus.bad_xmag = true;
|
|
|
|
hal.util->perf_end(_perf_test[2]);
|
|
|
|
return;
|
|
}
|
|
|
|
// Y axis
|
|
varInnovMag[1] = (P[20][20] + R_MAG + P[0][20]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][20]*SH_MAG[0] + P[18][20]*SH_MAG[3] - (SH_MAG[8] - 2.0f*q1*q2)*(P[20][16] + P[0][16]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][16]*SH_MAG[0] + P[18][16]*SH_MAG[3] - P[2][16]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][16]*(SH_MAG[8] - 2.0f*q1*q2)) - P[2][20]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) + (magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5])*(P[20][0] + P[0][0]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][0]*SH_MAG[0] + P[18][0]*SH_MAG[3] - P[2][0]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][0]*(SH_MAG[8] - 2.0f*q1*q2)) + SH_MAG[0]*(P[20][17] + P[0][17]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][17]*SH_MAG[0] + P[18][17]*SH_MAG[3] - P[2][17]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][17]*(SH_MAG[8] - 2.0f*q1*q2)) + SH_MAG[3]*(P[20][18] + P[0][18]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][18]*SH_MAG[0] + P[18][18]*SH_MAG[3] - P[2][18]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][18]*(SH_MAG[8] - 2.0f*q1*q2)) - P[16][20]*(SH_MAG[8] - 2.0f*q1*q2) - (magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1])*(P[20][2] + P[0][2]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][2]*SH_MAG[0] + P[18][2]*SH_MAG[3] - P[2][2]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][2]*(SH_MAG[8] - 2.0f*q1*q2)));
|
|
if (varInnovMag[1] >= R_MAG) {
|
|
faultStatus.bad_ymag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
obsIndex = 2;
|
|
faultStatus.bad_ymag = true;
|
|
|
|
hal.util->perf_end(_perf_test[2]);
|
|
|
|
return;
|
|
}
|
|
|
|
// Z axis
|
|
varInnovMag[2] = (P[21][21] + R_MAG + P[16][21]*SH_MAG[5] + P[18][21]*SH_MAG[2] - (2.0f*q0*q1 - 2.0f*q2*q3)*(P[21][17] + P[16][17]*SH_MAG[5] + P[18][17]*SH_MAG[2] - P[0][17]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][17]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][17]*(2.0f*q0*q1 - 2.0f*q2*q3)) - P[0][21]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][21]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) + SH_MAG[5]*(P[21][16] + P[16][16]*SH_MAG[5] + P[18][16]*SH_MAG[2] - P[0][16]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][16]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][16]*(2.0f*q0*q1 - 2.0f*q2*q3)) + SH_MAG[2]*(P[21][18] + P[16][18]*SH_MAG[5] + P[18][18]*SH_MAG[2] - P[0][18]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][18]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][18]*(2.0f*q0*q1 - 2.0f*q2*q3)) - (magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))*(P[21][0] + P[16][0]*SH_MAG[5] + P[18][0]*SH_MAG[2] - P[0][0]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][0]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][0]*(2.0f*q0*q1 - 2.0f*q2*q3)) - P[17][21]*(2.0f*q0*q1 - 2.0f*q2*q3) + (magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1])*(P[21][1] + P[16][1]*SH_MAG[5] + P[18][1]*SH_MAG[2] - P[0][1]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][1]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][1]*(2.0f*q0*q1 - 2.0f*q2*q3)));
|
|
if (varInnovMag[2] >= R_MAG) {
|
|
faultStatus.bad_zmag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
obsIndex = 3;
|
|
faultStatus.bad_zmag = true;
|
|
|
|
hal.util->perf_end(_perf_test[2]);
|
|
|
|
return;
|
|
}
|
|
|
|
// calculate the innovation test ratios
|
|
for (uint8_t i = 0; i<=2; i++) {
|
|
magTestRatio[i] = sq(innovMag[i]) / (sq(MAX(0.01f * (float)frontend->_magInnovGate, 1.0f)) * varInnovMag[i]);
|
|
}
|
|
|
|
// check the last values from all components and set magnetometer health accordingly
|
|
magHealth = (magTestRatio[0] < 1.0f && magTestRatio[1] < 1.0f && magTestRatio[2] < 1.0f);
|
|
|
|
// if the magnetometer is unhealthy, do not proceed further
|
|
if (!magHealth) {
|
|
return;
|
|
}
|
|
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
|
|
H_MAG[1] = SH_MAG[6] - magD*SH_MAG[2] - magN*SH_MAG[5];
|
|
H_MAG[2] = magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2);
|
|
H_MAG[16] = SH_MAG[1];
|
|
H_MAG[17] = SH_MAG[4];
|
|
H_MAG[18] = SH_MAG[7];
|
|
H_MAG[19] = 1.0f;
|
|
|
|
// calculate Kalman gain
|
|
SK_MX[0] = 1.0f / varInnovMag[0];
|
|
SK_MX[1] = magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2);
|
|
SK_MX[2] = magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5];
|
|
SK_MX[3] = SH_MAG[7];
|
|
Kfusion[0] = SK_MX[0]*(P[0][19] + P[0][16]*SH_MAG[1] + P[0][17]*SH_MAG[4] - P[0][1]*SK_MX[2] + P[0][2]*SK_MX[1] + P[0][18]*SK_MX[3]);
|
|
Kfusion[1] = SK_MX[0]*(P[1][19] + P[1][16]*SH_MAG[1] + P[1][17]*SH_MAG[4] - P[1][1]*SK_MX[2] + P[1][2]*SK_MX[1] + P[1][18]*SK_MX[3]);
|
|
Kfusion[2] = SK_MX[0]*(P[2][19] + P[2][16]*SH_MAG[1] + P[2][17]*SH_MAG[4] - P[2][1]*SK_MX[2] + P[2][2]*SK_MX[1] + P[2][18]*SK_MX[3]);
|
|
Kfusion[3] = SK_MX[0]*(P[3][19] + P[3][16]*SH_MAG[1] + P[3][17]*SH_MAG[4] - P[3][1]*SK_MX[2] + P[3][2]*SK_MX[1] + P[3][18]*SK_MX[3]);
|
|
Kfusion[4] = SK_MX[0]*(P[4][19] + P[4][16]*SH_MAG[1] + P[4][17]*SH_MAG[4] - P[4][1]*SK_MX[2] + P[4][2]*SK_MX[1] + P[4][18]*SK_MX[3]);
|
|
Kfusion[5] = SK_MX[0]*(P[5][19] + P[5][16]*SH_MAG[1] + P[5][17]*SH_MAG[4] - P[5][1]*SK_MX[2] + P[5][2]*SK_MX[1] + P[5][18]*SK_MX[3]);
|
|
Kfusion[6] = SK_MX[0]*(P[6][19] + P[6][16]*SH_MAG[1] + P[6][17]*SH_MAG[4] - P[6][1]*SK_MX[2] + P[6][2]*SK_MX[1] + P[6][18]*SK_MX[3]);
|
|
Kfusion[7] = SK_MX[0]*(P[7][19] + P[7][16]*SH_MAG[1] + P[7][17]*SH_MAG[4] - P[7][1]*SK_MX[2] + P[7][2]*SK_MX[1] + P[7][18]*SK_MX[3]);
|
|
Kfusion[8] = SK_MX[0]*(P[8][19] + P[8][16]*SH_MAG[1] + P[8][17]*SH_MAG[4] - P[8][1]*SK_MX[2] + P[8][2]*SK_MX[1] + P[8][18]*SK_MX[3]);
|
|
Kfusion[9] = SK_MX[0]*(P[9][19] + P[9][16]*SH_MAG[1] + P[9][17]*SH_MAG[4] - P[9][1]*SK_MX[2] + P[9][2]*SK_MX[1] + P[9][18]*SK_MX[3]);
|
|
Kfusion[10] = SK_MX[0]*(P[10][19] + P[10][16]*SH_MAG[1] + P[10][17]*SH_MAG[4] - P[10][1]*SK_MX[2] + P[10][2]*SK_MX[1] + P[10][18]*SK_MX[3]);
|
|
Kfusion[11] = SK_MX[0]*(P[11][19] + P[11][16]*SH_MAG[1] + P[11][17]*SH_MAG[4] - P[11][1]*SK_MX[2] + P[11][2]*SK_MX[1] + P[11][18]*SK_MX[3]);
|
|
Kfusion[12] = SK_MX[0]*(P[12][19] + P[12][16]*SH_MAG[1] + P[12][17]*SH_MAG[4] - P[12][1]*SK_MX[2] + P[12][2]*SK_MX[1] + P[12][18]*SK_MX[3]);
|
|
Kfusion[13] = SK_MX[0]*(P[13][19] + P[13][16]*SH_MAG[1] + P[13][17]*SH_MAG[4] - P[13][1]*SK_MX[2] + P[13][2]*SK_MX[1] + P[13][18]*SK_MX[3]);
|
|
Kfusion[14] = SK_MX[0]*(P[14][19] + P[14][16]*SH_MAG[1] + P[14][17]*SH_MAG[4] - P[14][1]*SK_MX[2] + P[14][2]*SK_MX[1] + P[14][18]*SK_MX[3]);
|
|
Kfusion[15] = SK_MX[0]*(P[15][19] + P[15][16]*SH_MAG[1] + P[15][17]*SH_MAG[4] - P[15][1]*SK_MX[2] + P[15][2]*SK_MX[1] + P[15][18]*SK_MX[3]);
|
|
// end perf block
|
|
|
|
// zero Kalman gains to inhibit wind state estimation
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = SK_MX[0]*(P[22][19] + P[22][16]*SH_MAG[1] + P[22][17]*SH_MAG[4] - P[22][1]*SK_MX[2] + P[22][2]*SK_MX[1] + P[22][18]*SK_MX[3]);
|
|
Kfusion[23] = SK_MX[0]*(P[23][19] + P[23][16]*SH_MAG[1] + P[23][17]*SH_MAG[4] - P[23][1]*SK_MX[2] + P[23][2]*SK_MX[1] + P[23][18]*SK_MX[3]);
|
|
} else {
|
|
Kfusion[22] = 0.0f;
|
|
Kfusion[23] = 0.0f;
|
|
}
|
|
// zero Kalman gains to inhibit magnetic field state estimation
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = SK_MX[0]*(P[16][19] + P[16][16]*SH_MAG[1] + P[16][17]*SH_MAG[4] - P[16][1]*SK_MX[2] + P[16][2]*SK_MX[1] + P[16][18]*SK_MX[3]);
|
|
Kfusion[17] = SK_MX[0]*(P[17][19] + P[17][16]*SH_MAG[1] + P[17][17]*SH_MAG[4] - P[17][1]*SK_MX[2] + P[17][2]*SK_MX[1] + P[17][18]*SK_MX[3]);
|
|
Kfusion[18] = SK_MX[0]*(P[18][19] + P[18][16]*SH_MAG[1] + P[18][17]*SH_MAG[4] - P[18][1]*SK_MX[2] + P[18][2]*SK_MX[1] + P[18][18]*SK_MX[3]);
|
|
Kfusion[19] = SK_MX[0]*(P[19][19] + P[19][16]*SH_MAG[1] + P[19][17]*SH_MAG[4] - P[19][1]*SK_MX[2] + P[19][2]*SK_MX[1] + P[19][18]*SK_MX[3]);
|
|
Kfusion[20] = SK_MX[0]*(P[20][19] + P[20][16]*SH_MAG[1] + P[20][17]*SH_MAG[4] - P[20][1]*SK_MX[2] + P[20][2]*SK_MX[1] + P[20][18]*SK_MX[3]);
|
|
Kfusion[21] = SK_MX[0]*(P[21][19] + P[21][16]*SH_MAG[1] + P[21][17]*SH_MAG[4] - P[21][1]*SK_MX[2] + P[21][2]*SK_MX[1] + P[21][18]*SK_MX[3]);
|
|
} else {
|
|
for (uint8_t i=16; i<=21; i++) {
|
|
Kfusion[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// inhibit position state modification if we are not aiding
|
|
if (PV_AidingMode == AID_NONE) {
|
|
Kfusion[6] = 0.0f;
|
|
Kfusion[7] = 0.0f;
|
|
}
|
|
|
|
// reset the observation index to 0 (we start by fusing the X measurement)
|
|
obsIndex = 0;
|
|
|
|
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
|
|
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
|
magFusePerformed = true;
|
|
magFuseRequired = true;
|
|
|
|
hal.util->perf_end(_perf_test[2]);
|
|
|
|
}
|
|
else if (obsIndex == 1) // we are now fusing the Y measurement
|
|
{
|
|
|
|
hal.util->perf_begin(_perf_test[3]);
|
|
|
|
// calculate observation jacobians
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
|
|
H_MAG[0] = magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5];
|
|
H_MAG[2] = - magE*SH_MAG[4] - magD*SH_MAG[7] - magN*SH_MAG[1];
|
|
H_MAG[16] = 2.0f*q1*q2 - SH_MAG[8];
|
|
H_MAG[17] = SH_MAG[0];
|
|
H_MAG[18] = SH_MAG[3];
|
|
H_MAG[20] = 1.0f;
|
|
|
|
// calculate Kalman gain
|
|
SK_MY[0] = 1.0f / varInnovMag[1];
|
|
SK_MY[1] = magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1];
|
|
SK_MY[2] = magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5];
|
|
SK_MY[3] = SH_MAG[8] - 2.0f*q1*q2;
|
|
Kfusion[0] = SK_MY[0]*(P[0][20] + P[0][17]*SH_MAG[0] + P[0][18]*SH_MAG[3] + P[0][0]*SK_MY[2] - P[0][2]*SK_MY[1] - P[0][16]*SK_MY[3]);
|
|
Kfusion[1] = SK_MY[0]*(P[1][20] + P[1][17]*SH_MAG[0] + P[1][18]*SH_MAG[3] + P[1][0]*SK_MY[2] - P[1][2]*SK_MY[1] - P[1][16]*SK_MY[3]);
|
|
Kfusion[2] = SK_MY[0]*(P[2][20] + P[2][17]*SH_MAG[0] + P[2][18]*SH_MAG[3] + P[2][0]*SK_MY[2] - P[2][2]*SK_MY[1] - P[2][16]*SK_MY[3]);
|
|
Kfusion[3] = SK_MY[0]*(P[3][20] + P[3][17]*SH_MAG[0] + P[3][18]*SH_MAG[3] + P[3][0]*SK_MY[2] - P[3][2]*SK_MY[1] - P[3][16]*SK_MY[3]);
|
|
Kfusion[4] = SK_MY[0]*(P[4][20] + P[4][17]*SH_MAG[0] + P[4][18]*SH_MAG[3] + P[4][0]*SK_MY[2] - P[4][2]*SK_MY[1] - P[4][16]*SK_MY[3]);
|
|
Kfusion[5] = SK_MY[0]*(P[5][20] + P[5][17]*SH_MAG[0] + P[5][18]*SH_MAG[3] + P[5][0]*SK_MY[2] - P[5][2]*SK_MY[1] - P[5][16]*SK_MY[3]);
|
|
Kfusion[6] = SK_MY[0]*(P[6][20] + P[6][17]*SH_MAG[0] + P[6][18]*SH_MAG[3] + P[6][0]*SK_MY[2] - P[6][2]*SK_MY[1] - P[6][16]*SK_MY[3]);
|
|
Kfusion[7] = SK_MY[0]*(P[7][20] + P[7][17]*SH_MAG[0] + P[7][18]*SH_MAG[3] + P[7][0]*SK_MY[2] - P[7][2]*SK_MY[1] - P[7][16]*SK_MY[3]);
|
|
Kfusion[8] = SK_MY[0]*(P[8][20] + P[8][17]*SH_MAG[0] + P[8][18]*SH_MAG[3] + P[8][0]*SK_MY[2] - P[8][2]*SK_MY[1] - P[8][16]*SK_MY[3]);
|
|
Kfusion[9] = SK_MY[0]*(P[9][20] + P[9][17]*SH_MAG[0] + P[9][18]*SH_MAG[3] + P[9][0]*SK_MY[2] - P[9][2]*SK_MY[1] - P[9][16]*SK_MY[3]);
|
|
Kfusion[10] = SK_MY[0]*(P[10][20] + P[10][17]*SH_MAG[0] + P[10][18]*SH_MAG[3] + P[10][0]*SK_MY[2] - P[10][2]*SK_MY[1] - P[10][16]*SK_MY[3]);
|
|
Kfusion[11] = SK_MY[0]*(P[11][20] + P[11][17]*SH_MAG[0] + P[11][18]*SH_MAG[3] + P[11][0]*SK_MY[2] - P[11][2]*SK_MY[1] - P[11][16]*SK_MY[3]);
|
|
Kfusion[12] = SK_MY[0]*(P[12][20] + P[12][17]*SH_MAG[0] + P[12][18]*SH_MAG[3] + P[12][0]*SK_MY[2] - P[12][2]*SK_MY[1] - P[12][16]*SK_MY[3]);
|
|
Kfusion[13] = SK_MY[0]*(P[13][20] + P[13][17]*SH_MAG[0] + P[13][18]*SH_MAG[3] + P[13][0]*SK_MY[2] - P[13][2]*SK_MY[1] - P[13][16]*SK_MY[3]);
|
|
Kfusion[14] = SK_MY[0]*(P[14][20] + P[14][17]*SH_MAG[0] + P[14][18]*SH_MAG[3] + P[14][0]*SK_MY[2] - P[14][2]*SK_MY[1] - P[14][16]*SK_MY[3]);
|
|
Kfusion[15] = SK_MY[0]*(P[15][20] + P[15][17]*SH_MAG[0] + P[15][18]*SH_MAG[3] + P[15][0]*SK_MY[2] - P[15][2]*SK_MY[1] - P[15][16]*SK_MY[3]);
|
|
// zero Kalman gains to inhibit wind state estimation
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = SK_MY[0]*(P[22][20] + P[22][17]*SH_MAG[0] + P[22][18]*SH_MAG[3] + P[22][0]*SK_MY[2] - P[22][2]*SK_MY[1] - P[22][16]*SK_MY[3]);
|
|
Kfusion[23] = SK_MY[0]*(P[23][20] + P[23][17]*SH_MAG[0] + P[23][18]*SH_MAG[3] + P[23][0]*SK_MY[2] - P[23][2]*SK_MY[1] - P[23][16]*SK_MY[3]);
|
|
} else {
|
|
Kfusion[22] = 0.0f;
|
|
Kfusion[23] = 0.0f;
|
|
}
|
|
// zero Kalman gains to inhibit magnetic field state estimation
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = SK_MY[0]*(P[16][20] + P[16][17]*SH_MAG[0] + P[16][18]*SH_MAG[3] + P[16][0]*SK_MY[2] - P[16][2]*SK_MY[1] - P[16][16]*SK_MY[3]);
|
|
Kfusion[17] = SK_MY[0]*(P[17][20] + P[17][17]*SH_MAG[0] + P[17][18]*SH_MAG[3] + P[17][0]*SK_MY[2] - P[17][2]*SK_MY[1] - P[17][16]*SK_MY[3]);
|
|
Kfusion[18] = SK_MY[0]*(P[18][20] + P[18][17]*SH_MAG[0] + P[18][18]*SH_MAG[3] + P[18][0]*SK_MY[2] - P[18][2]*SK_MY[1] - P[18][16]*SK_MY[3]);
|
|
Kfusion[19] = SK_MY[0]*(P[19][20] + P[19][17]*SH_MAG[0] + P[19][18]*SH_MAG[3] + P[19][0]*SK_MY[2] - P[19][2]*SK_MY[1] - P[19][16]*SK_MY[3]);
|
|
Kfusion[20] = SK_MY[0]*(P[20][20] + P[20][17]*SH_MAG[0] + P[20][18]*SH_MAG[3] + P[20][0]*SK_MY[2] - P[20][2]*SK_MY[1] - P[20][16]*SK_MY[3]);
|
|
Kfusion[21] = SK_MY[0]*(P[21][20] + P[21][17]*SH_MAG[0] + P[21][18]*SH_MAG[3] + P[21][0]*SK_MY[2] - P[21][2]*SK_MY[1] - P[21][16]*SK_MY[3]);
|
|
} else {
|
|
for (uint8_t i=16; i<=21; i++) {
|
|
Kfusion[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
|
|
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
|
magFusePerformed = true;
|
|
magFuseRequired = true;
|
|
|
|
hal.util->perf_end(_perf_test[3]);
|
|
|
|
}
|
|
else if (obsIndex == 2) // we are now fusing the Z measurement
|
|
{
|
|
|
|
hal.util->perf_begin(_perf_test[4]);
|
|
|
|
// calculate observation jacobians
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
|
|
H_MAG[0] = magN*(SH_MAG[8] - 2.0f*q1*q2) - magD*SH_MAG[3] - magE*SH_MAG[0];
|
|
H_MAG[1] = magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1];
|
|
H_MAG[16] = SH_MAG[5];
|
|
H_MAG[17] = 2.0f*q2*q3 - 2.0f*q0*q1;
|
|
H_MAG[18] = SH_MAG[2];
|
|
H_MAG[21] = 1.0f;
|
|
|
|
// calculate Kalman gain
|
|
SK_MZ[0] = 1.0f / varInnovMag[2];
|
|
SK_MZ[1] = magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2);
|
|
SK_MZ[2] = magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1];
|
|
SK_MZ[3] = 2.0f*q0*q1 - 2.0f*q2*q3;
|
|
Kfusion[0] = SK_MZ[0]*(P[0][21] + P[0][18]*SH_MAG[2] + P[0][16]*SH_MAG[5] - P[0][0]*SK_MZ[1] + P[0][1]*SK_MZ[2] - P[0][17]*SK_MZ[3]);
|
|
Kfusion[1] = SK_MZ[0]*(P[1][21] + P[1][18]*SH_MAG[2] + P[1][16]*SH_MAG[5] - P[1][0]*SK_MZ[1] + P[1][1]*SK_MZ[2] - P[1][17]*SK_MZ[3]);
|
|
Kfusion[2] = SK_MZ[0]*(P[2][21] + P[2][18]*SH_MAG[2] + P[2][16]*SH_MAG[5] - P[2][0]*SK_MZ[1] + P[2][1]*SK_MZ[2] - P[2][17]*SK_MZ[3]);
|
|
Kfusion[3] = SK_MZ[0]*(P[3][21] + P[3][18]*SH_MAG[2] + P[3][16]*SH_MAG[5] - P[3][0]*SK_MZ[1] + P[3][1]*SK_MZ[2] - P[3][17]*SK_MZ[3]);
|
|
Kfusion[4] = SK_MZ[0]*(P[4][21] + P[4][18]*SH_MAG[2] + P[4][16]*SH_MAG[5] - P[4][0]*SK_MZ[1] + P[4][1]*SK_MZ[2] - P[4][17]*SK_MZ[3]);
|
|
Kfusion[5] = SK_MZ[0]*(P[5][21] + P[5][18]*SH_MAG[2] + P[5][16]*SH_MAG[5] - P[5][0]*SK_MZ[1] + P[5][1]*SK_MZ[2] - P[5][17]*SK_MZ[3]);
|
|
Kfusion[6] = SK_MZ[0]*(P[6][21] + P[6][18]*SH_MAG[2] + P[6][16]*SH_MAG[5] - P[6][0]*SK_MZ[1] + P[6][1]*SK_MZ[2] - P[6][17]*SK_MZ[3]);
|
|
Kfusion[7] = SK_MZ[0]*(P[7][21] + P[7][18]*SH_MAG[2] + P[7][16]*SH_MAG[5] - P[7][0]*SK_MZ[1] + P[7][1]*SK_MZ[2] - P[7][17]*SK_MZ[3]);
|
|
Kfusion[8] = SK_MZ[0]*(P[8][21] + P[8][18]*SH_MAG[2] + P[8][16]*SH_MAG[5] - P[8][0]*SK_MZ[1] + P[8][1]*SK_MZ[2] - P[8][17]*SK_MZ[3]);
|
|
Kfusion[9] = SK_MZ[0]*(P[9][21] + P[9][18]*SH_MAG[2] + P[9][16]*SH_MAG[5] - P[9][0]*SK_MZ[1] + P[9][1]*SK_MZ[2] - P[9][17]*SK_MZ[3]);
|
|
Kfusion[10] = SK_MZ[0]*(P[10][21] + P[10][18]*SH_MAG[2] + P[10][16]*SH_MAG[5] - P[10][0]*SK_MZ[1] + P[10][1]*SK_MZ[2] - P[10][17]*SK_MZ[3]);
|
|
Kfusion[11] = SK_MZ[0]*(P[11][21] + P[11][18]*SH_MAG[2] + P[11][16]*SH_MAG[5] - P[11][0]*SK_MZ[1] + P[11][1]*SK_MZ[2] - P[11][17]*SK_MZ[3]);
|
|
Kfusion[12] = SK_MZ[0]*(P[12][21] + P[12][18]*SH_MAG[2] + P[12][16]*SH_MAG[5] - P[12][0]*SK_MZ[1] + P[12][1]*SK_MZ[2] - P[12][17]*SK_MZ[3]);
|
|
Kfusion[13] = SK_MZ[0]*(P[13][21] + P[13][18]*SH_MAG[2] + P[13][16]*SH_MAG[5] - P[13][0]*SK_MZ[1] + P[13][1]*SK_MZ[2] - P[13][17]*SK_MZ[3]);
|
|
Kfusion[14] = SK_MZ[0]*(P[14][21] + P[14][18]*SH_MAG[2] + P[14][16]*SH_MAG[5] - P[14][0]*SK_MZ[1] + P[14][1]*SK_MZ[2] - P[14][17]*SK_MZ[3]);
|
|
Kfusion[15] = SK_MZ[0]*(P[15][21] + P[15][18]*SH_MAG[2] + P[15][16]*SH_MAG[5] - P[15][0]*SK_MZ[1] + P[15][1]*SK_MZ[2] - P[15][17]*SK_MZ[3]);
|
|
// zero Kalman gains to inhibit wind state estimation
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = SK_MZ[0]*(P[22][21] + P[22][18]*SH_MAG[2] + P[22][16]*SH_MAG[5] - P[22][0]*SK_MZ[1] + P[22][1]*SK_MZ[2] - P[22][17]*SK_MZ[3]);
|
|
Kfusion[23] = SK_MZ[0]*(P[23][21] + P[23][18]*SH_MAG[2] + P[23][16]*SH_MAG[5] - P[23][0]*SK_MZ[1] + P[23][1]*SK_MZ[2] - P[23][17]*SK_MZ[3]);
|
|
} else {
|
|
Kfusion[22] = 0.0f;
|
|
Kfusion[23] = 0.0f;
|
|
}
|
|
// zero Kalman gains to inhibit magnetic field state estimation
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = SK_MZ[0]*(P[16][21] + P[16][18]*SH_MAG[2] + P[16][16]*SH_MAG[5] - P[16][0]*SK_MZ[1] + P[16][1]*SK_MZ[2] - P[16][17]*SK_MZ[3]);
|
|
Kfusion[17] = SK_MZ[0]*(P[17][21] + P[17][18]*SH_MAG[2] + P[17][16]*SH_MAG[5] - P[17][0]*SK_MZ[1] + P[17][1]*SK_MZ[2] - P[17][17]*SK_MZ[3]);
|
|
Kfusion[18] = SK_MZ[0]*(P[18][21] + P[18][18]*SH_MAG[2] + P[18][16]*SH_MAG[5] - P[18][0]*SK_MZ[1] + P[18][1]*SK_MZ[2] - P[18][17]*SK_MZ[3]);
|
|
Kfusion[19] = SK_MZ[0]*(P[19][21] + P[19][18]*SH_MAG[2] + P[19][16]*SH_MAG[5] - P[19][0]*SK_MZ[1] + P[19][1]*SK_MZ[2] - P[19][17]*SK_MZ[3]);
|
|
Kfusion[20] = SK_MZ[0]*(P[20][21] + P[20][18]*SH_MAG[2] + P[20][16]*SH_MAG[5] - P[20][0]*SK_MZ[1] + P[20][1]*SK_MZ[2] - P[20][17]*SK_MZ[3]);
|
|
Kfusion[21] = SK_MZ[0]*(P[21][21] + P[21][18]*SH_MAG[2] + P[21][16]*SH_MAG[5] - P[21][0]*SK_MZ[1] + P[21][1]*SK_MZ[2] - P[21][17]*SK_MZ[3]);
|
|
} else {
|
|
for (uint8_t i=16; i<=21; i++) {
|
|
Kfusion[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
|
|
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
|
magFusePerformed = true;
|
|
magFuseRequired = false;
|
|
|
|
hal.util->perf_end(_perf_test[4]);
|
|
|
|
}
|
|
|
|
hal.util->perf_begin(_perf_test[5]);
|
|
|
|
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
|
|
stateStruct.angErr.zero();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovMag[obsIndex];
|
|
}
|
|
|
|
// Inhibit corrections to tilt if requested. This enables mag states to settle after a reset without causing sudden changes in roll and pitch
|
|
if (magFuseTiltInhibit) {
|
|
stateStruct.angErr.x = 0.0f;
|
|
stateStruct.angErr.y = 0.0f;
|
|
}
|
|
|
|
// the first 3 states represent the angular misalignment vector. This is
|
|
// is used to correct the estimated quaternion on the current time step
|
|
stateStruct.quat.rotate(stateStruct.angErr);
|
|
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=2; j++) {
|
|
KH[i][j] = Kfusion[i] * H_MAG[j];
|
|
}
|
|
for (unsigned j = 3; j<=15; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
for (unsigned j = 16; j<=21; j++) {
|
|
KH[i][j] = Kfusion[i] * H_MAG[j];
|
|
}
|
|
for (unsigned j = 22; j<=23; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
ftype res = 0;
|
|
res += KH[i][0] * P[0][j];
|
|
res += KH[i][1] * P[1][j];
|
|
res += KH[i][2] * P[2][j];
|
|
res += KH[i][16] * P[16][j];
|
|
res += KH[i][17] * P[17][j];
|
|
res += KH[i][18] * P[18][j];
|
|
res += KH[i][19] * P[19][j];
|
|
res += KH[i][20] * P[20][j];
|
|
res += KH[i][21] * P[21][j];
|
|
KHP[i][j] = res;
|
|
}
|
|
}
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent
|
|
// ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
hal.util->perf_end(_perf_test[5]);
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* Fuse compass measurements using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
|
|
* This fusion method only modifies the orientation, does not require use of the magnetic field states and is computatonally cheaper.
|
|
* It is suitable for use when the external magnetic field environment is disturbed (eg close to metal structures, on ground).
|
|
* It is not as robust to magneometer failures.
|
|
*/
|
|
void NavEKF2_core::fuseCompass()
|
|
{
|
|
float q0 = stateStruct.quat[0];
|
|
float q1 = stateStruct.quat[1];
|
|
float q2 = stateStruct.quat[2];
|
|
float q3 = stateStruct.quat[3];
|
|
|
|
float magX = magDataDelayed.mag.x;
|
|
float magY = magDataDelayed.mag.y;
|
|
float magZ = magDataDelayed.mag.z;
|
|
|
|
// compass measurement error variance (rad^2)
|
|
const float R_MAG = 3e-2f;
|
|
|
|
// Calculate observation Jacobian
|
|
float t2 = q0*q0;
|
|
float t3 = q1*q1;
|
|
float t4 = q2*q2;
|
|
float t5 = q3*q3;
|
|
float t6 = q0*q2*2.0f;
|
|
float t7 = q1*q3*2.0f;
|
|
float t8 = t6+t7;
|
|
float t9 = q0*q3*2.0f;
|
|
float t13 = q1*q2*2.0f;
|
|
float t10 = t9-t13;
|
|
float t11 = t2+t3-t4-t5;
|
|
float t12 = magX*t11;
|
|
float t14 = magZ*t8;
|
|
float t19 = magY*t10;
|
|
float t15 = t12+t14-t19;
|
|
float t16 = t2-t3+t4-t5;
|
|
float t17 = q0*q1*2.0f;
|
|
float t24 = q2*q3*2.0f;
|
|
float t18 = t17-t24;
|
|
float t20 = 1.0f/t15;
|
|
float t21 = magY*t16;
|
|
float t22 = t9+t13;
|
|
float t23 = magX*t22;
|
|
float t28 = magZ*t18;
|
|
float t25 = t21+t23-t28;
|
|
float t29 = t20*t25;
|
|
float t26 = tan(t29);
|
|
float t27 = 1.0f/(t15*t15);
|
|
float t30 = t26*t26;
|
|
float t31 = t30+1.0f;
|
|
float H_MAG[3];
|
|
H_MAG[0] = -t31*(t20*(magZ*t16+magY*t18)+t25*t27*(magY*t8+magZ*t10));
|
|
H_MAG[1] = t31*(t20*(magX*t18+magZ*t22)+t25*t27*(magX*t8-magZ*t11));
|
|
H_MAG[2] = t31*(t20*(magX*t16-magY*t22)+t25*t27*(magX*t10+magY*t11));
|
|
|
|
// Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 3 elements in H are non zero
|
|
float PH[3];
|
|
float varInnov = R_MAG;
|
|
for (uint8_t rowIndex=0; rowIndex<=2; rowIndex++) {
|
|
PH[rowIndex] = 0.0f;
|
|
for (uint8_t colIndex=0; colIndex<=2; colIndex++) {
|
|
PH[rowIndex] += P[rowIndex][colIndex]*H_MAG[colIndex];
|
|
}
|
|
varInnov += H_MAG[rowIndex]*PH[rowIndex];
|
|
}
|
|
float varInnovInv;
|
|
if (varInnov >= R_MAG) {
|
|
varInnovInv = 1.0f / varInnov;
|
|
// All three magnetometer components are used in this measurement, so we output health status on three axes
|
|
faultStatus.bad_xmag = false;
|
|
faultStatus.bad_ymag = false;
|
|
faultStatus.bad_zmag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
// All three magnetometer components are used in this measurement, so we output health status on three axes
|
|
faultStatus.bad_xmag = true;
|
|
faultStatus.bad_ymag = true;
|
|
faultStatus.bad_zmag = true;
|
|
return;
|
|
}
|
|
for (uint8_t rowIndex=0; rowIndex<=stateIndexLim; rowIndex++) {
|
|
Kfusion[rowIndex] = 0.0f;
|
|
for (uint8_t colIndex=0; colIndex<=2; colIndex++) {
|
|
Kfusion[rowIndex] += P[rowIndex][colIndex]*H_MAG[colIndex];
|
|
}
|
|
Kfusion[rowIndex] *= varInnovInv;
|
|
}
|
|
|
|
// Calculate the innovation
|
|
float innovation = calcMagHeadingInnov();
|
|
|
|
// Copy raw value to output variable used for data logging
|
|
innovYaw = innovation;
|
|
|
|
// limit the innovation so that initial corrections are not too large
|
|
if (innovation > 0.5f) {
|
|
innovation = 0.5f;
|
|
} else if (innovation < -0.5f) {
|
|
innovation = -0.5f;
|
|
}
|
|
|
|
// calculate the innovation test ratio
|
|
yawTestRatio = sq(innovation) / (sq(MAX(0.01f * (float)frontend->_magInnovGate, 1.0f)) * varInnov);
|
|
|
|
// Declare the magnetometer unhealthy if the innovation test fails
|
|
if (yawTestRatio > 1.0f) {
|
|
magHealth = false;
|
|
// On the ground a large innovation could be due to large initial gyro bias or magnetic interference from nearby objects
|
|
// If we are flying, then it is more likely due to a magnetometer fault and we should not fuse the data
|
|
if (inFlight) {
|
|
return;
|
|
}
|
|
} else {
|
|
magHealth = true;
|
|
}
|
|
|
|
// correct the state vector
|
|
stateStruct.angErr.zero();
|
|
for (uint8_t i=0; i<=stateIndexLim; i++) {
|
|
statesArray[i] -= Kfusion[i] * innovation;
|
|
}
|
|
|
|
// the first 3 states represent the angular misalignment vector. This is
|
|
// is used to correct the estimated quaternion on the current time step
|
|
stateStruct.quat.rotate(stateStruct.angErr);
|
|
|
|
// correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero
|
|
float HP[24];
|
|
for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++) {
|
|
HP[colIndex] = 0.0f;
|
|
for (uint8_t rowIndex=0; rowIndex<=2; rowIndex++) {
|
|
HP[colIndex] += H_MAG[rowIndex]*P[rowIndex][colIndex];
|
|
}
|
|
}
|
|
for (uint8_t rowIndex=0; rowIndex<=stateIndexLim; rowIndex++) {
|
|
for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++) {
|
|
P[rowIndex][colIndex] -= Kfusion[rowIndex] * HP[colIndex];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent
|
|
// ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
}
|
|
|
|
/*
|
|
* Fuse declination angle using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
|
|
* This is used to prevent the declination of the EKF earth field states from drifting during operation without GPS
|
|
* or some other absolute position or velocity reference
|
|
*/
|
|
void NavEKF2_core::FuseDeclination()
|
|
{
|
|
// declination error variance (rad^2)
|
|
const float R_DECL = 1e-2f;
|
|
|
|
// copy required states to local variables
|
|
float magN = stateStruct.earth_magfield.x;
|
|
float magE = stateStruct.earth_magfield.y;
|
|
|
|
// prevent bad earth field states from causing numerical errors or exceptions
|
|
if (magN < 1e-3f) {
|
|
return;
|
|
}
|
|
|
|
// Calculate observation Jacobian and Kalman gains
|
|
float t2 = 1.0f/magN;
|
|
float t4 = magE*t2;
|
|
float t3 = tanf(t4);
|
|
float t5 = t3*t3;
|
|
float t6 = t5+1.0f;
|
|
float t7 = 1.0f/(magN*magN);
|
|
float t8 = P[17][17]*t2*t6;
|
|
float t15 = P[16][17]*magE*t6*t7;
|
|
float t9 = t8-t15;
|
|
float t10 = t2*t6*t9;
|
|
float t11 = P[17][16]*t2*t6;
|
|
float t16 = P[16][16]*magE*t6*t7;
|
|
float t12 = t11-t16;
|
|
float t17 = magE*t6*t7*t12;
|
|
float t13 = R_DECL+t10-t17;
|
|
float t14 = 1.0f/t13;
|
|
float t18 = magE;
|
|
float t19 = magN;
|
|
float t21 = 1.0f/t19;
|
|
float t22 = t18*t21;
|
|
float t20 = tanf(t22);
|
|
float t23 = t20*t20;
|
|
float t24 = t23+1.0f;
|
|
|
|
float H_MAG[24];
|
|
H_MAG[16] = -t18*1.0f/(t19*t19)*t24;
|
|
H_MAG[17] = t21*t24;
|
|
|
|
for (uint8_t i=0; i<=15; i++) {
|
|
Kfusion[i] = t14*(P[i][17]*t2*t6-P[i][16]*magE*t6*t7);
|
|
}
|
|
Kfusion[16] = -t14*(t16-P[16][17]*t2*t6);
|
|
Kfusion[17] = t14*(t8-P[17][16]*magE*t6*t7);
|
|
for (uint8_t i=17; i<=23; i++) {
|
|
Kfusion[i] = t14*(P[i][17]*t2*t6-P[i][16]*magE*t6*t7);
|
|
}
|
|
|
|
// inhibit position state modification if we are not aiding
|
|
if (PV_AidingMode == AID_NONE) {
|
|
Kfusion[6] = 0.0f;
|
|
Kfusion[7] = 0.0f;
|
|
}
|
|
|
|
// get the magnetic declination
|
|
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
|
|
|
// Calculate the innovation
|
|
float innovation = atanf(t4) - magDecAng;
|
|
|
|
// limit the innovation to protect against data errors
|
|
if (innovation > 0.5f) {
|
|
innovation = 0.5f;
|
|
} else if (innovation < -0.5f) {
|
|
innovation = -0.5f;
|
|
}
|
|
|
|
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
|
|
stateStruct.angErr.zero();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovation;
|
|
}
|
|
|
|
// the first 3 states represent the angular misalignment vector. This is
|
|
// is used to correct the estimated quaternion on the current time step
|
|
stateStruct.quat.rotate(stateStruct.angErr);
|
|
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=15; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
KH[i][16] = Kfusion[i] * H_MAG[16];
|
|
KH[i][17] = Kfusion[i] * H_MAG[17];
|
|
for (unsigned j = 18; j<=23; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
KHP[i][j] = KH[i][16] * P[16][j] + KH[i][17] * P[17][j];
|
|
}
|
|
}
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent
|
|
// ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
}
|
|
|
|
// Calculate magnetic heading innovation
|
|
float NavEKF2_core::calcMagHeadingInnov()
|
|
{
|
|
// rotate predicted earth components into body axes and calculate
|
|
// predicted measurements
|
|
Matrix3f Tbn_temp;
|
|
stateStruct.quat.rotation_matrix(Tbn_temp);
|
|
Vector3f magMeasNED = Tbn_temp*magDataDelayed.mag;
|
|
|
|
// calculate the innovation where the predicted measurement is the angle wrt magnetic north of the horizontal component of the measured field
|
|
float innovation = atan2f(magMeasNED.y,magMeasNED.x) - _ahrs->get_compass()->get_declination();
|
|
|
|
// wrap the innovation so it sits on the range from +-pi
|
|
if (innovation > M_PI_F) {
|
|
innovation = innovation - 2*M_PI_F;
|
|
} else if (innovation < -M_PI_F) {
|
|
innovation = innovation + 2*M_PI_F;
|
|
}
|
|
|
|
// Unwrap so that a large yaw gyro bias offset that causes the heading to wrap does not lead to continual uncontrolled heading drift
|
|
if (innovation - lastInnovation > M_PI_F) {
|
|
// Angle has wrapped in the positive direction to subtract an additional 2*Pi
|
|
innovationIncrement -= 2*M_PI_F;
|
|
} else if (innovation -innovationIncrement < -M_PI_F) {
|
|
// Angle has wrapped in the negative direction so add an additional 2*Pi
|
|
innovationIncrement += 2*M_PI_F;
|
|
}
|
|
lastInnovation = innovation;
|
|
|
|
return innovation + innovationIncrement;
|
|
}
|
|
|
|
/********************************************************
|
|
* MISC FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// align the NE earth magnetic field states with the published declination
|
|
void NavEKF2_core::alignMagStateDeclination()
|
|
{
|
|
// get the magnetic declination
|
|
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
|
|
|
// rotate the NE values so that the declination matches the published value
|
|
Vector3f initMagNED = stateStruct.earth_magfield;
|
|
float magLengthNE = pythagorous2(initMagNED.x,initMagNED.y);
|
|
stateStruct.earth_magfield.x = magLengthNE * cosf(magDecAng);
|
|
stateStruct.earth_magfield.y = magLengthNE * sinf(magDecAng);
|
|
}
|
|
|
|
|
|
#endif // HAL_CPU_CLASS
|