mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 06:38:29 -04:00
178e7eca54
this sets up a target airspeed even when flying without an airspeed sensor. This is needed for quadplanes without airspeed sensors where we use synthetic airspeed during the transition in TECS
388 lines
13 KiB
C++
388 lines
13 KiB
C++
#include "Plane.h"
|
|
#include <AP_RSSI/AP_RSSI.h>
|
|
|
|
void Plane::init_barometer(bool full_calibration)
|
|
{
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Calibrating barometer");
|
|
if (full_calibration) {
|
|
barometer.calibrate();
|
|
} else {
|
|
barometer.update_calibration();
|
|
}
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Barometer calibration complete");
|
|
}
|
|
|
|
void Plane::init_rangefinder(void)
|
|
{
|
|
rangefinder.init();
|
|
}
|
|
|
|
/*
|
|
read the rangefinder and update height estimate
|
|
*/
|
|
void Plane::read_rangefinder(void)
|
|
{
|
|
|
|
// notify the rangefinder of our approximate altitude above ground to allow it to power on
|
|
// during low-altitude flight when configured to power down during higher-altitude flight
|
|
float height;
|
|
#if AP_TERRAIN_AVAILABLE
|
|
if (terrain.status() == AP_Terrain::TerrainStatusOK && terrain.height_above_terrain(height, true)) {
|
|
rangefinder.set_estimated_terrain_height(height);
|
|
} else
|
|
#endif
|
|
{
|
|
// use the best available alt estimate via baro above home
|
|
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
|
|
// ensure the rangefinder is powered-on when land alt is higher than home altitude.
|
|
// This is done using the target alt which we know is below us and we are sinking to it
|
|
height = height_above_target();
|
|
} else {
|
|
// otherwise just use the best available baro estimate above home.
|
|
height = relative_altitude;
|
|
}
|
|
rangefinder.set_estimated_terrain_height(height);
|
|
}
|
|
|
|
rangefinder.update();
|
|
|
|
if (should_log(MASK_LOG_SONAR))
|
|
Log_Write_Sonar();
|
|
|
|
rangefinder_height_update();
|
|
}
|
|
|
|
/*
|
|
calibrate compass
|
|
*/
|
|
void Plane::compass_cal_update() {
|
|
if (!hal.util->get_soft_armed()) {
|
|
compass.compass_cal_update();
|
|
}
|
|
}
|
|
|
|
/*
|
|
Accel calibration
|
|
*/
|
|
void Plane::accel_cal_update() {
|
|
if (hal.util->get_soft_armed()) {
|
|
return;
|
|
}
|
|
ins.acal_update();
|
|
float trim_roll, trim_pitch;
|
|
if(ins.get_new_trim(trim_roll, trim_pitch)) {
|
|
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
|
|
}
|
|
}
|
|
|
|
/*
|
|
ask airspeed sensor for a new value
|
|
*/
|
|
void Plane::read_airspeed(void)
|
|
{
|
|
if (airspeed.enabled()) {
|
|
airspeed.read();
|
|
if (should_log(MASK_LOG_IMU)) {
|
|
Log_Write_Airspeed();
|
|
}
|
|
|
|
// supply a new temperature to the barometer from the digital
|
|
// airspeed sensor if we can
|
|
float temperature;
|
|
if (airspeed.get_temperature(temperature)) {
|
|
barometer.set_external_temperature(temperature);
|
|
}
|
|
}
|
|
|
|
// we calculate airspeed errors (and thus target_airspeed_cm) even
|
|
// when airspeed is disabled as TECS may be using synthetic
|
|
// airspeed for a quadplane transition
|
|
calc_airspeed_errors();
|
|
|
|
// update smoothed airspeed estimate
|
|
float aspeed;
|
|
if (ahrs.airspeed_estimate(&aspeed)) {
|
|
smoothed_airspeed = smoothed_airspeed * 0.8f + aspeed * 0.2f;
|
|
}
|
|
}
|
|
|
|
void Plane::zero_airspeed(bool in_startup)
|
|
{
|
|
airspeed.calibrate(in_startup);
|
|
read_airspeed();
|
|
// update barometric calibration with new airspeed supplied temperature
|
|
barometer.update_calibration();
|
|
gcs().send_text(MAV_SEVERITY_INFO,"Airspeed calibration started");
|
|
}
|
|
|
|
// read_battery - reads battery voltage and current and invokes failsafe
|
|
// should be called at 10hz
|
|
void Plane::read_battery(void)
|
|
{
|
|
battery.read();
|
|
compass.set_current(battery.current_amps());
|
|
|
|
if (hal.util->get_soft_armed() &&
|
|
battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah)) {
|
|
low_battery_event();
|
|
}
|
|
if (battery.get_type() != AP_BattMonitor::BattMonitor_TYPE_NONE) {
|
|
AP_Notify::flags.battery_voltage = battery.voltage();
|
|
}
|
|
|
|
if (should_log(MASK_LOG_CURRENT)) {
|
|
Log_Write_Current();
|
|
}
|
|
}
|
|
|
|
// read the receiver RSSI as an 8 bit number for MAVLink
|
|
// RC_CHANNELS_SCALED message
|
|
void Plane::read_receiver_rssi(void)
|
|
{
|
|
receiver_rssi = rssi.read_receiver_rssi_uint8();
|
|
}
|
|
|
|
/*
|
|
update RPM sensors
|
|
*/
|
|
void Plane::rpm_update(void)
|
|
{
|
|
rpm_sensor.update();
|
|
if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) {
|
|
if (should_log(MASK_LOG_RC)) {
|
|
DataFlash.Log_Write_RPM(rpm_sensor);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
update AP_Button
|
|
*/
|
|
void Plane::button_update(void)
|
|
{
|
|
g2.button.update();
|
|
}
|
|
|
|
/*
|
|
update AP_ICEngine
|
|
*/
|
|
void Plane::ice_update(void)
|
|
{
|
|
g2.ice_control.update();
|
|
}
|
|
// update error mask of sensors and subsystems. The mask
|
|
// uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set
|
|
// then it indicates that the sensor or subsystem is present but
|
|
// not functioning correctly.
|
|
void Plane::update_sensor_status_flags(void)
|
|
{
|
|
// default sensors present
|
|
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
|
|
|
|
// first what sensors/controllers we have
|
|
if (g.compass_enabled) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
|
|
}
|
|
|
|
if (airspeed.enabled()) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
|
|
}
|
|
if (gps.status() > AP_GPS::NO_GPS) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
|
|
}
|
|
#if OPTFLOW == ENABLED
|
|
if (optflow.enabled()) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
|
|
}
|
|
#endif
|
|
if (geofence_present()) {
|
|
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
|
|
}
|
|
|
|
if (aparm.throttle_min < 0) {
|
|
control_sensors_present |= MAV_SYS_STATUS_REVERSE_MOTOR;
|
|
}
|
|
if (plane.DataFlash.logging_present()) { // primary logging only (usually File)
|
|
control_sensors_present |= MAV_SYS_STATUS_LOGGING;
|
|
}
|
|
|
|
if (plane.battery.healthy()) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_BATTERY;
|
|
}
|
|
|
|
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence, motor, and battery output which we will set individually
|
|
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE & ~MAV_SYS_STATUS_LOGGING & ~MAV_SYS_STATUS_SENSOR_BATTERY);
|
|
|
|
if (airspeed.enabled() && airspeed.use()) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
|
|
}
|
|
|
|
if (geofence_enabled()) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
|
|
}
|
|
|
|
if (plane.DataFlash.logging_enabled()) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
|
|
}
|
|
|
|
if (g.fs_batt_voltage > 0 || g.fs_batt_mah > 0) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY;
|
|
}
|
|
|
|
switch (control_mode) {
|
|
case MANUAL:
|
|
break;
|
|
|
|
case ACRO:
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
|
|
break;
|
|
|
|
case STABILIZE:
|
|
case FLY_BY_WIRE_A:
|
|
case AUTOTUNE:
|
|
case QSTABILIZE:
|
|
case QHOVER:
|
|
case QLAND:
|
|
case QLOITER:
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
|
|
break;
|
|
|
|
case FLY_BY_WIRE_B:
|
|
case CRUISE:
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
|
|
break;
|
|
|
|
case TRAINING:
|
|
if (!training_manual_roll || !training_manual_pitch) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
|
|
}
|
|
break;
|
|
|
|
case AUTO:
|
|
case RTL:
|
|
case LOITER:
|
|
case AVOID_ADSB:
|
|
case GUIDED:
|
|
case CIRCLE:
|
|
case QRTL:
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
|
|
break;
|
|
|
|
case INITIALISING:
|
|
break;
|
|
}
|
|
|
|
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
|
|
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
|
|
}
|
|
|
|
// default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy.
|
|
control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE |
|
|
MAV_SYS_STATUS_SENSOR_3D_MAG |
|
|
MAV_SYS_STATUS_SENSOR_GPS |
|
|
MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE);
|
|
control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;
|
|
|
|
if (ahrs.initialised() && !ahrs.healthy()) {
|
|
// AHRS subsystem is unhealthy
|
|
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
|
|
}
|
|
if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) {
|
|
// trying to use EKF without properly calibrated accelerometers
|
|
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
|
|
}
|
|
|
|
if (barometer.all_healthy()) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
|
|
}
|
|
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
|
|
}
|
|
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
|
|
}
|
|
#if OPTFLOW == ENABLED
|
|
if (optflow.healthy()) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
|
|
}
|
|
#endif
|
|
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
|
|
}
|
|
if (!ins.get_accel_health_all()) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
|
|
}
|
|
if (airspeed.healthy()) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
|
|
}
|
|
#if GEOFENCE_ENABLED
|
|
if (geofence_breached()) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE;
|
|
}
|
|
#endif
|
|
|
|
if (plane.DataFlash.logging_failed()) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_LOGGING;
|
|
}
|
|
|
|
if (millis() - failsafe.last_valid_rc_ms < 200) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
|
|
} else {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
|
|
}
|
|
|
|
#if AP_TERRAIN_AVAILABLE
|
|
switch (terrain.status()) {
|
|
case AP_Terrain::TerrainStatusDisabled:
|
|
break;
|
|
case AP_Terrain::TerrainStatusUnhealthy:
|
|
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
|
|
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
|
|
break;
|
|
case AP_Terrain::TerrainStatusOK:
|
|
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
|
|
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
|
|
control_sensors_health |= MAV_SYS_STATUS_TERRAIN;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
if (rangefinder.has_orientation(ROTATION_PITCH_270)) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
|
|
if (g.rangefinder_landing) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
|
|
}
|
|
if (rangefinder.has_data_orient(ROTATION_PITCH_270)) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
|
|
}
|
|
}
|
|
|
|
if (aparm.throttle_min < 0 && SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < 0) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_REVERSE_MOTOR;
|
|
control_sensors_health |= MAV_SYS_STATUS_REVERSE_MOTOR;
|
|
}
|
|
|
|
if (AP_Notify::flags.initialising) {
|
|
// while initialising the gyros and accels are not enabled
|
|
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
|
|
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
|
|
}
|
|
|
|
if (plane.failsafe.low_battery) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_BATTERY;
|
|
}
|
|
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
// give mask of error flags to Frsky_Telemetry
|
|
frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present);
|
|
#endif
|
|
}
|