ardupilot/libraries/AP_Motors/AP_MotorsTailsitter.cpp

213 lines
7.3 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsTailsitter.cpp - ArduCopter motors library for tailsitters and bicopters
*
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_MotorsTailsitter.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
#define SERVO_OUTPUT_RANGE 4500
#define THROTTLE_RANGE 100
// init
void AP_MotorsTailsitter::init(motor_frame_class frame_class, motor_frame_type frame_type)
{
// make sure 4 output channels are mapped
add_motor_num(AP_MOTORS_THROTTLE_LEFT);
add_motor_num(AP_MOTORS_THROTTLE_RIGHT);
add_motor_num(AP_MOTORS_TILT_LEFT);
add_motor_num(AP_MOTORS_TILT_RIGHT);
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types
motor_enabled[AP_MOTORS_THROTTLE_LEFT] = true;
motor_enabled[AP_MOTORS_THROTTLE_RIGHT] = true;
// record successful initialisation if what we setup was the desired frame_class
_flags.initialised_ok = (frame_class == MOTOR_FRAME_TAILSITTER);
}
/// Constructor
AP_MotorsTailsitter::AP_MotorsTailsitter(uint16_t loop_rate, uint16_t speed_hz) :
AP_MotorsMulticopter(loop_rate, speed_hz)
{
SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleLeft, speed_hz);
SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleRight, speed_hz);
}
// set update rate to motors - a value in hertz
void AP_MotorsTailsitter::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
uint32_t mask =
1U << AP_MOTORS_THROTTLE_LEFT |
1U << AP_MOTORS_THROTTLE_RIGHT;
rc_set_freq(mask, _speed_hz);
}
void AP_MotorsTailsitter::output_to_motors()
{
if (!_flags.initialised_ok) {
return;
}
float throttle = 0.0f;
switch (_spool_mode) {
case SHUT_DOWN:
throttle = get_pwm_output_min();
rc_write(AP_MOTORS_THROTTLE_LEFT, get_pwm_output_min());
rc_write(AP_MOTORS_THROTTLE_RIGHT, get_pwm_output_min());
break;
case SPIN_WHEN_ARMED:
throttle = constrain_float(_spin_up_ratio, 0.0f, 1.0f) * _spin_min;
rc_write(AP_MOTORS_THROTTLE_LEFT, calc_spin_up_to_pwm());
rc_write(AP_MOTORS_THROTTLE_RIGHT, calc_spin_up_to_pwm());
break;
case SPOOL_UP:
case THROTTLE_UNLIMITED:
case SPOOL_DOWN:
throttle = calc_thrust_to_pwm(_throttle);
rc_write(AP_MOTORS_THROTTLE_LEFT, calc_thrust_to_pwm(_thrust_left));
rc_write(AP_MOTORS_THROTTLE_RIGHT, calc_thrust_to_pwm(_thrust_right));
break;
}
// Always output to tilts
rc_write_angle(AP_MOTORS_TILT_LEFT, _tilt_left*SERVO_OUTPUT_RANGE);
rc_write_angle(AP_MOTORS_TILT_RIGHT, _tilt_right*SERVO_OUTPUT_RANGE);
// plane outputs for Qmodes are setup here, and written to the HAL by the plane servos loop
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, -_yaw_in*SERVO_OUTPUT_RANGE);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, _pitch_in*SERVO_OUTPUT_RANGE);
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, _roll_in*SERVO_OUTPUT_RANGE);
SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, throttle);
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
SRV_Channels::calc_pwm();
SRV_Channels::output_ch_all();
#endif
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsTailsitter::get_motor_mask()
{
uint32_t motor_mask =
1U << AP_MOTORS_THROTTLE_LEFT |
1U << AP_MOTORS_THROTTLE_RIGHT |
1U << AP_MOTORS_TILT_LEFT |
1U << AP_MOTORS_TILT_RIGHT;
uint16_t mask = rc_map_mask(motor_mask);
// add parent's mask
mask |= AP_MotorsMulticopter::get_motor_mask();
return mask;
}
// calculate outputs to the motors
void AP_MotorsTailsitter::output_armed_stabilizing()
{
float roll_thrust; // roll thrust input value, +/- 1.0
float pitch_thrust; // pitch thrust input value, +/- 1.0
float yaw_thrust; // yaw thrust input value, +/- 1.0
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
float thrust_max; // highest motor value
float thr_adj = 0.0f; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
// apply voltage and air pressure compensation
const float compensation_gain = get_compensation_gain();
roll_thrust = _roll_in * compensation_gain;
pitch_thrust = _pitch_in * compensation_gain;
yaw_thrust = _yaw_in * compensation_gain;
throttle_thrust = get_throttle() * compensation_gain;
// sanity check throttle is above zero and below current limited throttle
if (throttle_thrust <= 0.0f) {
throttle_thrust = 0.0f;
limit.throttle_lower = true;
}
if (throttle_thrust >= _throttle_thrust_max) {
throttle_thrust = _throttle_thrust_max;
limit.throttle_upper = true;
}
// caculate left and right throttle outputs
_thrust_left = throttle_thrust + roll_thrust*0.5;
_thrust_right = throttle_thrust - roll_thrust*0.5;
// if max thrust is more than one reduce average throttle
thrust_max = MAX(_thrust_right,_thrust_left);
if (thrust_max > 1.0f) {
thr_adj = 1.0f - thrust_max;
limit.throttle_upper = true;
limit.roll_pitch = true;
}
// Add ajustment to reduce average throttle
_thrust_left = constrain_float(_thrust_left + thr_adj, 0.0f, 1.0f);
_thrust_right = constrain_float(_thrust_right + thr_adj, 0.0f, 1.0f);
_throttle = throttle_thrust + thr_adj;
// thrust vectoring
_tilt_left = pitch_thrust - yaw_thrust;
_tilt_right = pitch_thrust + yaw_thrust;
}
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsTailsitter::output_test_seq(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// throttle left
rc_write(AP_MOTORS_THROTTLE_LEFT, pwm);
break;
case 2:
// throttle right
rc_write(AP_MOTORS_THROTTLE_RIGHT, pwm);
break;
case 3:
// tilt left
rc_write(AP_MOTORS_TILT_LEFT, pwm);
break;
case 4:
// tilt right
rc_write(AP_MOTORS_TILT_RIGHT, pwm);
break;
default:
// do nothing
break;
}
}