ardupilot/libraries/AC_AttitudeControl/AC_AttitudeControl_Multi.cpp
2023-08-31 11:09:10 +10:00

413 lines
18 KiB
C++

#include "AC_AttitudeControl_Multi.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AC_PID/AC_PID.h>
// table of user settable parameters
const AP_Param::GroupInfo AC_AttitudeControl_Multi::var_info[] = {
// parameters from parent vehicle
AP_NESTEDGROUPINFO(AC_AttitudeControl, 0),
// @Param: RAT_RLL_P
// @DisplayName: Roll axis rate controller P gain
// @Description: Roll axis rate controller P gain. Corrects in proportion to the difference between the desired roll rate vs actual roll rate
// @Range: 0.01 0.5
// @Increment: 0.005
// @User: Standard
// @Param: RAT_RLL_I
// @DisplayName: Roll axis rate controller I gain
// @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate
// @Range: 0.01 2.0
// @Increment: 0.01
// @User: Standard
// @Param: RAT_RLL_IMAX
// @DisplayName: Roll axis rate controller I gain maximum
// @Description: Roll axis rate controller I gain maximum. Constrains the maximum that the I term will output
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
// @Param: RAT_RLL_D
// @DisplayName: Roll axis rate controller D gain
// @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate
// @Range: 0.0 0.05
// @Increment: 0.001
// @User: Standard
// @Param: RAT_RLL_FF
// @DisplayName: Roll axis rate controller feed forward
// @Description: Roll axis rate controller feed forward
// @Range: 0 0.5
// @Increment: 0.001
// @User: Standard
// @Param: RAT_RLL_FLTT
// @DisplayName: Roll axis rate controller target frequency in Hz
// @Description: Roll axis rate controller target frequency in Hz
// @Range: 5 100
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: RAT_RLL_FLTE
// @DisplayName: Roll axis rate controller error frequency in Hz
// @Description: Roll axis rate controller error frequency in Hz
// @Range: 0 100
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: RAT_RLL_FLTD
// @DisplayName: Roll axis rate controller derivative frequency in Hz
// @Description: Roll axis rate controller derivative frequency in Hz
// @Range: 5 100
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: RAT_RLL_SMAX
// @DisplayName: Roll slew rate limit
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
// @Range: 0 200
// @Increment: 0.5
// @User: Advanced
AP_SUBGROUPINFO(_pid_rate_roll, "RAT_RLL_", 1, AC_AttitudeControl_Multi, AC_PID),
// @Param: RAT_PIT_P
// @DisplayName: Pitch axis rate controller P gain
// @Description: Pitch axis rate controller P gain. Corrects in proportion to the difference between the desired pitch rate vs actual pitch rate output
// @Range: 0.01 0.50
// @Increment: 0.005
// @User: Standard
// @Param: RAT_PIT_I
// @DisplayName: Pitch axis rate controller I gain
// @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate
// @Range: 0.01 2.0
// @Increment: 0.01
// @User: Standard
// @Param: RAT_PIT_IMAX
// @DisplayName: Pitch axis rate controller I gain maximum
// @Description: Pitch axis rate controller I gain maximum. Constrains the maximum that the I term will output
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
// @Param: RAT_PIT_D
// @DisplayName: Pitch axis rate controller D gain
// @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate
// @Range: 0.0 0.05
// @Increment: 0.001
// @User: Standard
// @Param: RAT_PIT_FF
// @DisplayName: Pitch axis rate controller feed forward
// @Description: Pitch axis rate controller feed forward
// @Range: 0 0.5
// @Increment: 0.001
// @User: Standard
// @Param: RAT_PIT_FLTT
// @DisplayName: Pitch axis rate controller target frequency in Hz
// @Description: Pitch axis rate controller target frequency in Hz
// @Range: 5 100
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: RAT_PIT_FLTE
// @DisplayName: Pitch axis rate controller error frequency in Hz
// @Description: Pitch axis rate controller error frequency in Hz
// @Range: 0 100
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: RAT_PIT_FLTD
// @DisplayName: Pitch axis rate controller derivative frequency in Hz
// @Description: Pitch axis rate controller derivative frequency in Hz
// @Range: 5 100
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: RAT_PIT_SMAX
// @DisplayName: Pitch slew rate limit
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
// @Range: 0 200
// @Increment: 0.5
// @User: Advanced
AP_SUBGROUPINFO(_pid_rate_pitch, "RAT_PIT_", 2, AC_AttitudeControl_Multi, AC_PID),
// @Param: RAT_YAW_P
// @DisplayName: Yaw axis rate controller P gain
// @Description: Yaw axis rate controller P gain. Corrects in proportion to the difference between the desired yaw rate vs actual yaw rate
// @Range: 0.10 2.50
// @Increment: 0.005
// @User: Standard
// @Param: RAT_YAW_I
// @DisplayName: Yaw axis rate controller I gain
// @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate
// @Range: 0.010 1.0
// @Increment: 0.01
// @User: Standard
// @Param: RAT_YAW_IMAX
// @DisplayName: Yaw axis rate controller I gain maximum
// @Description: Yaw axis rate controller I gain maximum. Constrains the maximum that the I term will output
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
// @Param: RAT_YAW_D
// @DisplayName: Yaw axis rate controller D gain
// @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate
// @Range: 0.000 0.02
// @Increment: 0.001
// @User: Standard
// @Param: RAT_YAW_FF
// @DisplayName: Yaw axis rate controller feed forward
// @Description: Yaw axis rate controller feed forward
// @Range: 0 0.5
// @Increment: 0.001
// @User: Standard
// @Param: RAT_YAW_FLTT
// @DisplayName: Yaw axis rate controller target frequency in Hz
// @Description: Yaw axis rate controller target frequency in Hz
// @Range: 1 50
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: RAT_YAW_FLTE
// @DisplayName: Yaw axis rate controller error frequency in Hz
// @Description: Yaw axis rate controller error frequency in Hz
// @Range: 0 20
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: RAT_YAW_FLTD
// @DisplayName: Yaw axis rate controller derivative frequency in Hz
// @Description: Yaw axis rate controller derivative frequency in Hz
// @Range: 5 50
// @Increment: 1
// @Units: Hz
// @User: Standard
// @Param: RAT_YAW_SMAX
// @DisplayName: Yaw slew rate limit
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
// @Range: 0 200
// @Increment: 0.5
// @User: Advanced
AP_SUBGROUPINFO(_pid_rate_yaw, "RAT_YAW_", 3, AC_AttitudeControl_Multi, AC_PID),
// @Param: THR_MIX_MIN
// @DisplayName: Throttle Mix Minimum
// @Description: Throttle vs attitude control prioritisation used when landing (higher values mean we prioritise attitude control over throttle)
// @Range: 0.1 0.25
// @User: Advanced
AP_GROUPINFO("THR_MIX_MIN", 4, AC_AttitudeControl_Multi, _thr_mix_min, AC_ATTITUDE_CONTROL_MIN_DEFAULT),
// @Param: THR_MIX_MAX
// @DisplayName: Throttle Mix Maximum
// @Description: Throttle vs attitude control prioritisation used during active flight (higher values mean we prioritise attitude control over throttle)
// @Range: 0.5 0.9
// @User: Advanced
AP_GROUPINFO("THR_MIX_MAX", 5, AC_AttitudeControl_Multi, _thr_mix_max, AC_ATTITUDE_CONTROL_MAX_DEFAULT),
// @Param: THR_MIX_MAN
// @DisplayName: Throttle Mix Manual
// @Description: Throttle vs attitude control prioritisation used during manual flight (higher values mean we prioritise attitude control over throttle)
// @Range: 0.1 0.9
// @User: Advanced
AP_GROUPINFO("THR_MIX_MAN", 6, AC_AttitudeControl_Multi, _thr_mix_man, AC_ATTITUDE_CONTROL_MAN_DEFAULT),
// @Param: THR_G_BOOST
// @DisplayName: Throttle-gain boost
// @Description: Throttle-gain boost ratio. A value of 0 means no boosting is applied, a value of 1 means full boosting is applied. Describes the ratio increase that is applied to angle P and PD on pitch and roll.
// @Range: 0 1
// @User: Advanced
AP_GROUPINFO("THR_G_BOOST", 7, AC_AttitudeControl_Multi, _throttle_gain_boost, 0.0f),
AP_GROUPEND
};
AC_AttitudeControl_Multi::AC_AttitudeControl_Multi(AP_AHRS_View &ahrs, const AP_MultiCopter &aparm, AP_MotorsMulticopter& motors) :
AC_AttitudeControl(ahrs, aparm, motors),
_motors_multi(motors)
{
AP_Param::setup_object_defaults(this, var_info);
}
// Update Alt_Hold angle maximum
void AC_AttitudeControl_Multi::update_althold_lean_angle_max(float throttle_in)
{
// calc maximum tilt angle based on throttle
float thr_max = _motors_multi.get_throttle_thrust_max();
// divide by zero check
if (is_zero(thr_max)) {
_althold_lean_angle_max = 0.0f;
return;
}
float althold_lean_angle_max = acosf(constrain_float(throttle_in / (AC_ATTITUDE_CONTROL_ANGLE_LIMIT_THROTTLE_MAX * thr_max), 0.0f, 1.0f));
_althold_lean_angle_max = _althold_lean_angle_max + (_dt / (_dt + _angle_limit_tc)) * (althold_lean_angle_max - _althold_lean_angle_max);
}
void AC_AttitudeControl_Multi::set_throttle_out(float throttle_in, bool apply_angle_boost, float filter_cutoff)
{
_throttle_in = throttle_in;
update_althold_lean_angle_max(throttle_in);
_motors.set_throttle_filter_cutoff(filter_cutoff);
if (apply_angle_boost) {
// Apply angle boost
throttle_in = get_throttle_boosted(throttle_in);
} else {
// Clear angle_boost for logging purposes
_angle_boost = 0.0f;
}
_motors.set_throttle(throttle_in);
_motors.set_throttle_avg_max(get_throttle_avg_max(MAX(throttle_in, _throttle_in)));
}
void AC_AttitudeControl_Multi::set_throttle_mix_max(float ratio)
{
ratio = constrain_float(ratio, 0.0f, 1.0f);
_throttle_rpy_mix_desired = (1.0f - ratio) * _thr_mix_min + ratio * _thr_mix_max;
}
// returns a throttle including compensation for roll/pitch angle
// throttle value should be 0 ~ 1
float AC_AttitudeControl_Multi::get_throttle_boosted(float throttle_in)
{
if (!_angle_boost_enabled) {
_angle_boost = 0;
return throttle_in;
}
// inverted_factor is 1 for tilt angles below 60 degrees
// inverted_factor reduces from 1 to 0 for tilt angles between 60 and 90 degrees
float cos_tilt = _ahrs.cos_pitch() * _ahrs.cos_roll();
float inverted_factor = constrain_float(10.0f * cos_tilt, 0.0f, 1.0f);
float cos_tilt_target = cosf(_thrust_angle);
float boost_factor = 1.0f / constrain_float(cos_tilt_target, 0.1f, 1.0f);
float throttle_out = throttle_in * inverted_factor * boost_factor;
_angle_boost = constrain_float(throttle_out - throttle_in, -1.0f, 1.0f);
return throttle_out;
}
// returns a throttle including compensation for roll/pitch angle
// throttle value should be 0 ~ 1
float AC_AttitudeControl_Multi::get_throttle_avg_max(float throttle_in)
{
throttle_in = constrain_float(throttle_in, 0.0f, 1.0f);
return MAX(throttle_in, throttle_in * MAX(0.0f, 1.0f - _throttle_rpy_mix) + _motors.get_throttle_hover() * _throttle_rpy_mix);
}
// update_throttle_gain_boost - boost angle_p/pd each cycle on high throttle slew
void AC_AttitudeControl_Multi::update_throttle_gain_boost()
{
// Boost PD and Angle P on very rapid throttle changes
if (_motors.get_throttle_slew_rate() > AC_ATTITUDE_CONTROL_THR_G_BOOST_THRESH) {
const float pd_boost = constrain_float(_throttle_gain_boost + 1.0f, 1.0, 2.0);
set_PD_scale_mult(Vector3f(pd_boost, pd_boost, 1.0f));
const float angle_p_boost = constrain_float((_throttle_gain_boost + 1.0f) * (_throttle_gain_boost + 1.0f), 1.0, 4.0);
set_angle_P_scale_mult(Vector3f(angle_p_boost, angle_p_boost, 1.0f));
}
}
// update_throttle_rpy_mix - slew set_throttle_rpy_mix to requested value
void AC_AttitudeControl_Multi::update_throttle_rpy_mix()
{
// slew _throttle_rpy_mix to _throttle_rpy_mix_desired
if (_throttle_rpy_mix < _throttle_rpy_mix_desired) {
// increase quickly (i.e. from 0.1 to 0.9 in 0.4 seconds)
_throttle_rpy_mix += MIN(2.0f * _dt, _throttle_rpy_mix_desired - _throttle_rpy_mix);
} else if (_throttle_rpy_mix > _throttle_rpy_mix_desired) {
// reduce more slowly (from 0.9 to 0.1 in 1.6 seconds)
_throttle_rpy_mix -= MIN(0.5f * _dt, _throttle_rpy_mix - _throttle_rpy_mix_desired);
// if the mix is still higher than that being used, reset immediately
const float throttle_hover = _motors.get_throttle_hover();
const float throttle_in = _motors.get_throttle();
const float throttle_out = MAX(_motors.get_throttle_out(), throttle_in);
float mix_used;
// since throttle_out >= throttle_in at this point we don't need to check throttle_in < throttle_hover
if (throttle_out < throttle_hover) {
mix_used = (throttle_out - throttle_in) / (throttle_hover - throttle_in);
} else {
mix_used = throttle_out / throttle_hover;
}
_throttle_rpy_mix = MIN(_throttle_rpy_mix, MAX(mix_used, _throttle_rpy_mix_desired));
}
_throttle_rpy_mix = constrain_float(_throttle_rpy_mix, 0.1f, AC_ATTITUDE_CONTROL_MAX);
}
void AC_AttitudeControl_Multi::rate_controller_run()
{
// boost angle_p/pd each cycle on high throttle slew
update_throttle_gain_boost();
// move throttle vs attitude mixing towards desired (called from here because this is conveniently called on every iteration)
update_throttle_rpy_mix();
_ang_vel_body += _sysid_ang_vel_body;
Vector3f gyro_latest = _ahrs.get_gyro_latest();
_motors.set_roll(get_rate_roll_pid().update_all(_ang_vel_body.x, gyro_latest.x, _dt, _motors.limit.roll, _pd_scale.x) + _actuator_sysid.x);
_motors.set_roll_ff(get_rate_roll_pid().get_ff());
_motors.set_pitch(get_rate_pitch_pid().update_all(_ang_vel_body.y, gyro_latest.y, _dt, _motors.limit.pitch, _pd_scale.y) + _actuator_sysid.y);
_motors.set_pitch_ff(get_rate_pitch_pid().get_ff());
_motors.set_yaw(get_rate_yaw_pid().update_all(_ang_vel_body.z, gyro_latest.z, _dt, _motors.limit.yaw, _pd_scale.z) + _actuator_sysid.z);
_motors.set_yaw_ff(get_rate_yaw_pid().get_ff()*_feedforward_scalar);
_sysid_ang_vel_body.zero();
_actuator_sysid.zero();
_pd_scale_used = _pd_scale;
_pd_scale = VECTORF_111;
control_monitor_update();
}
// sanity check parameters. should be called once before takeoff
void AC_AttitudeControl_Multi::parameter_sanity_check()
{
// sanity check throttle mix parameters
if (_thr_mix_man < 0.1f || _thr_mix_man > AC_ATTITUDE_CONTROL_MAN_LIMIT) {
// parameter description recommends thr-mix-man be no higher than 0.9 but we allow up to 4.0
// which can be useful for very high powered copters with very low hover throttle
_thr_mix_man.set_and_save(constrain_float(_thr_mix_man, 0.1, AC_ATTITUDE_CONTROL_MAN_LIMIT));
}
if (_thr_mix_min < 0.1f || _thr_mix_min > AC_ATTITUDE_CONTROL_MIN_LIMIT) {
_thr_mix_min.set_and_save(constrain_float(_thr_mix_min, 0.1, AC_ATTITUDE_CONTROL_MIN_LIMIT));
}
if (_thr_mix_max < 0.5f || _thr_mix_max > AC_ATTITUDE_CONTROL_MAX) {
// parameter description recommends thr-mix-max be no higher than 0.9 but we allow up to 5.0
// which can be useful for very high powered copters with very low hover throttle
_thr_mix_max.set_and_save(constrain_float(_thr_mix_max, 0.5, AC_ATTITUDE_CONTROL_MAX));
}
if (_thr_mix_min > _thr_mix_max) {
_thr_mix_min.set_and_save(AC_ATTITUDE_CONTROL_MIN_DEFAULT);
_thr_mix_max.set_and_save(AC_ATTITUDE_CONTROL_MAX_DEFAULT);
}
}