ardupilot/ArduCopter/test.pde

1205 lines
27 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
//static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
//static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv);
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
//static int8_t test_tri(uint8_t argc, const Menu::arg *argv);
//static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
static int8_t test_ins(uint8_t argc, const Menu::arg *argv);
static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
//static int8_t test_dcm_eulers(uint8_t argc, const Menu::arg *argv);
//static int8_t test_dcm(uint8_t argc, const Menu::arg *argv);
//static int8_t test_omega(uint8_t argc, const Menu::arg *argv);
//static int8_t test_stab_d(uint8_t argc, const Menu::arg *argv);
static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
//static int8_t test_boost(uint8_t argc, const Menu::arg *argv);
//static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv);
//static int8_t test_reverse(uint8_t argc, const Menu::arg *argv);
static int8_t test_tuning(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t test_baro(uint8_t argc, const Menu::arg *argv);
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv);
#endif
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
static int8_t test_optflow(uint8_t argc, const Menu::arg *argv);
static int8_t test_logging(uint8_t argc, const Menu::arg *argv);
//static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv);
//static int8_t test_mission(uint8_t argc, const Menu::arg *argv);
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of printf that reads from flash memory
/*static int8_t help_test(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("\n"
"Commands:\n"
" radio\n"
" servos\n"
" g_gps\n"
" imu\n"
" battery\n"
"\n"));
}*/
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command test_menu_commands[] PROGMEM = {
{"pwm", test_radio_pwm},
{"radio", test_radio},
// {"failsafe", test_failsafe},
// {"stabilize", test_stabilize},
{"gps", test_gps},
// {"adc", test_adc},
{"ins", test_ins},
{"imu", test_imu},
// {"dcm", test_dcm_eulers},
//{"omega", test_omega},
// {"stab_d", test_stab_d},
{"battery", test_battery},
{"tune", test_tuning},
//{"tri", test_tri},
{"relay", test_relay},
{"wp", test_wp},
// {"boost", test_boost},
#if HIL_MODE != HIL_MODE_ATTITUDE
{"altitude", test_baro},
{"sonar", test_sonar},
#endif
{"compass", test_mag},
{"optflow", test_optflow},
//{"xbee", test_xbee},
{"eedump", test_eedump},
{"logging", test_logging},
// {"rawgps", test_rawgps},
// {"mission", test_mission},
//{"reverse", test_reverse},
//{"wp", test_wp_nav},
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
static int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
//Serial.printf_P(PSTR("Test Mode\n\n"));
test_menu.run();
return 0;
}
static int8_t
test_eedump(uint8_t argc, const Menu::arg *argv)
{
int i, j;
// hexdump the EEPROM
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
Serial.printf_P(PSTR("%04x:"), i);
for (j = 0; j < 16; j++)
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j)));
Serial.println();
}
return(0);
}
static int8_t
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included
print_test_disabled();
return (0);
#else
print_hit_enter();
delay(1000);
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
// servo Yaw
//APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
g.rc_1.radio_in,
g.rc_2.radio_in,
g.rc_3.radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in);
if(Serial.available() > 0){
return (0);
}
}
#endif
}
/*
//static int8_t
//test_tri(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
g.rc_4.servo_out = g.rc_4.control_in;
g.rc_4.calc_pwm();
Serial.printf_P(PSTR("input: %d\toutput%d\n"),
g.rc_4.control_in,
g.rc_4.radio_out);
APM_RC.OutputCh(CH_TRI_YAW, g.rc_4.radio_out);
if(Serial.available() > 0){
return (0);
}
}
}*/
/*
static int8_t
//test_boost(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
int16_t temp = MINIMUM_THROTTLE;
while(1){
delay(20);
g.rc_3.control_in = temp;
adjust_altitude();
Serial.printf("tmp:%d, boost: %d\n", temp, manual_boost);
temp++;
if(temp > MAXIMUM_THROTTLE){
return (0);
}
}
}
//*/
static int8_t
test_radio(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(20);
read_radio();
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"),
g.rc_1.control_in,
g.rc_2.control_in,
g.rc_3.control_in,
g.rc_4.control_in,
g.rc_5.control_in,
g.rc_6.control_in,
g.rc_7.control_in);
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100));
/*Serial.printf_P(PSTR( "min: %d"
"\t in: %d"
"\t pwm_in: %d"
"\t sout: %d"
"\t pwm_out %d\n"),
g.rc_3.radio_min,
g.rc_3.control_in,
g.rc_3.radio_in,
g.rc_3.servo_out,
g.rc_3.pwm_out
);
*/
if(Serial.available() > 0){
return (0);
}
}
}
/*
//static int8_t
//test_failsafe(uint8_t argc, const Menu::arg *argv)
{
#if THROTTLE_FAILSAFE
byte fail_test;
print_hit_enter();
for(int i = 0; i < 50; i++){
delay(20);
read_radio();
}
oldSwitchPosition = readSwitch();
Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
while(g.rc_3.control_in > 0){
delay(20);
read_radio();
}
while(1){
delay(20);
read_radio();
if(g.rc_3.control_in > 0){
Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in);
fail_test++;
}
if(oldSwitchPosition != readSwitch()){
Serial.printf_P(PSTR("CONTROL MODE CHANGED: "));
Serial.println(flight_mode_strings[readSwitch()]);
fail_test++;
}
if(g.throttle_fs_enabled && g.rc_3.get_failsafe()){
Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in);
Serial.println(flight_mode_strings[readSwitch()]);
fail_test++;
}
if(fail_test > 0){
return (0);
}
if(Serial.available() > 0){
Serial.printf_P(PSTR("LOS caused no change in ACM.\n"));
return (0);
}
}
#else
return (0);
#endif
}
*/
/*
//static int8_t
//test_stabilize(uint8_t argc, const Menu::arg *argv)
{
static byte ts_num;
print_hit_enter();
delay(1000);
// setup the radio
// ---------------
init_rc_in();
control_mode = STABILIZE;
Serial.printf_P(PSTR("g.pi_stabilize_roll.kP: %4.4f\n"), g.pi_stabilize_roll.kP());
Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener);
motor_auto_armed = false;
motor_armed = true;
while(1){
// 50 hz
if (millis() - fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
fast_loopTimer = millis();
G_Dt = (float)delta_ms_fast_loop / 1000.f;
if(g.compass_enabled){
medium_loopCounter++;
if(medium_loopCounter == 5){
Matrix3f m = dcm.get_dcm_matrix();
compass.read(); // Read magnetometer
compass.calculate(m);
compass.null_offsets();
medium_loopCounter = 0;
}
}
// for trim features
read_trim_switch();
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
// IMU
// ---
read_AHRS();
// allow us to zero out sensors with control switches
if(g.rc_5.control_in < 600){
dcm.roll_sensor = dcm.pitch_sensor = 0;
}
// custom code/exceptions for flight modes
// ---------------------------------------
update_current_flight_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
ts_num++;
if (ts_num > 10){
ts_num = 0;
Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "),
(int)(dcm.roll_sensor/100),
(int)(dcm.pitch_sensor/100),
g.rc_1.pwm_out);
print_motor_out();
}
// R: 1417, L: 1453 F: 1453 B: 1417
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
if(Serial.available() > 0){
if(g.compass_enabled){
compass.save_offsets();
report_compass();
}
return (0);
}
}
}
}
*/
/*
#if HIL_MODE != HIL_MODE_ATTITUDE && CONFIG_ADC == ENABLED
//static int8_t
//test_adc(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
Serial.printf_P(PSTR("ADC\n"));
delay(1000);
adc.Init(&timer_scheduler);
delay(50);
while(1){
for(int i = 0; i < 9; i++){
Serial.printf_P(PSTR("%.1f,"),adc.Ch(i));
}
Serial.println();
delay(20);
if(Serial.available() > 0){
return (0);
}
}
}
#endif
*/
static int8_t
test_ins(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included
print_test_disabled();
return (0);
#else
float gyro[3], accel[3], temp;
print_hit_enter();
Serial.printf_P(PSTR("InertialSensor\n"));
delay(1000);
ins.init(&timer_scheduler);
delay(50);
while(1){
ins.update();
ins.get_gyros(gyro);
ins.get_accels(accel);
temp = ins.temperature();
Serial.printf_P(PSTR("g"));
for (int i = 0; i < 3; i++) {
Serial.printf_P(PSTR(" %7.4f"), gyro[i]);
}
Serial.printf_P(PSTR(" a"));
for (int i = 0; i < 3; i++) {
Serial.printf_P(PSTR(" %7.4f"),accel[i]);
}
Serial.printf_P(PSTR(" t %7.4f \n"), temp);
delay(40);
if(Serial.available() > 0){
return (0);
}
}
#endif
}
/*
test the IMU interface
*/
static int8_t
test_imu(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included
print_test_disabled();
return (0);
#else
Vector3f gyro;
Vector3f accel;
imu.init(IMU::WARM_START, delay, flash_leds, &timer_scheduler);
report_imu();
imu.init_gyro(delay, flash_leds);
report_imu();
print_hit_enter();
delay(1000);
while(1){
delay(40);
imu.update();
gyro = imu.get_gyro();
accel = imu.get_accel();
Serial.printf_P(PSTR("g %8.4f %8.4f %8.4f"), gyro.x, gyro.y, gyro.z);
Serial.printf_P(PSTR(" a %8.4f %8.4f %8.4f\n"), accel.x, accel.y, accel.z);
if(Serial.available() > 0){
return (0);
}
}
#endif
}
/*
test the DCM code, printing Euler angles
*/
/*static int8_t
//test_dcm_eulers(uint8_t argc, const Menu::arg *argv)
{
//Serial.printf_P(PSTR("Calibrating."));
//dcm.kp_yaw(0.02);
//dcm.ki_yaw(0);
imu.init(IMU::WARM_START, delay, flash_leds, &timer_scheduler);
report_imu();
imu.init_gyro(delay, flash_leds);
report_imu();
print_hit_enter();
delay(1000);
//float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw;
fast_loopTimer = millis();
while(1){
//delay(20);
if (millis() - fast_loopTimer >=20) {
// IMU
// ---
read_AHRS();
medium_loopCounter++;
if(medium_loopCounter == 4){
update_trig();
}
if(medium_loopCounter == 1){
medium_loopCounter = 0;
Serial.printf_P(PSTR("dcm: %6.1f, %6.1f, %6.1f omega: %6.1f, %6.1f, %6.1f\n"),
dcm.roll_sensor/100.0,
dcm.pitch_sensor/100.0,
dcm.yaw_sensor/100.0,
degrees(omega.x),
degrees(omega.y),
degrees(omega.z));
if(g.compass_enabled){
compass.read(); // Read magnetometer
Matrix3f m = dcm.get_dcm_matrix();
compass.calculate(m);
compass.null_offsets();
}
}
fast_loopTimer = millis();
}
if(Serial.available() > 0){
return (0);
}
}
return (0);
}*/
static int8_t
test_gps(uint8_t argc, const Menu::arg *argv)
{
/*
print_hit_enter();
delay(1000);
while(1){
delay(333);
// Blink GPS LED if we don't have a fix
// ------------------------------------
update_GPS_light();
g_gps->update();
if (g_gps->new_data){
Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"),
g_gps->latitude,
g_gps->longitude,
g_gps->altitude/100,
g_gps->num_sats);
g_gps->new_data = false;
}else{
Serial.print(".");
}
if(Serial.available() > 0){
return (0);
}
}
*/
return 0;
}
// used to test the gain scheduler for Stab_D
/*
static int8_t
test_stab_d(uint8_t argc, const Menu::arg *argv)
{
int16_t i = 0;
g.stabilize_d = 1;
g.stabilize_d_schedule = 1
for (i = -4600; i < 4600; i+=10) {
new_radio_frame = true;
g.rc_1.control_in = i;
g.rc_2.control_in = i;
update_roll_pitch_mode();
Serial.printf("rin:%d, d:%1.6f \tpin:%d, d:%1.6f\n",g.rc_1.control_in, roll_scale_d, g.rc_2.control_in, pitch_scale_d);
}
g.stabilize_d_schedule = .5
for (i = -4600; i < 4600; i+=10) {
new_radio_frame = true;
g.rc_1.control_in = i;
g.rc_2.control_in = i;
update_roll_pitch_mode();
Serial.printf("rin:%d, d:%1.6f \tpin:%d, d:%1.6f\n",g.rc_1.control_in, roll_scale_d, g.rc_2.control_in, pitch_scale_d);
}
g.stabilize_d_schedule = 0
for (i = -4600; i < 4600; i+=10) {
new_radio_frame = true;
g.rc_1.control_in = i;
g.rc_2.control_in = i;
update_roll_pitch_mode();
Serial.printf("rin:%d, d:%1.6f \tpin:%d, d:%1.6f\n",g.rc_1.control_in, roll_scale_d, g.rc_2.control_in, pitch_scale_d);
}
}*/
/*
//static int8_t
//test_dcm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Gyro | Accel\n"));
Vector3f _cam_vector;
Vector3f _out_vector;
G_Dt = .02;
while(1){
for(byte i = 0; i <= 50; i++){
delay(20);
// IMU
// ---
read_AHRS();
}
Matrix3f temp = dcm.get_dcm_matrix();
Matrix3f temp_t = dcm.get_dcm_transposed();
Serial.printf_P(PSTR("dcm\n"
"%4.4f \t %4.4f \t %4.4f \n"
"%4.4f \t %4.4f \t %4.4f \n"
"%4.4f \t %4.4f \t %4.4f \n\n"),
temp.a.x, temp.a.y, temp.a.z,
temp.b.x, temp.b.y, temp.b.z,
temp.c.x, temp.c.y, temp.c.z);
int _pitch = degrees(-asin(temp.c.x));
int _roll = degrees(atan2(temp.c.y, temp.c.z));
int _yaw = degrees(atan2(temp.b.x, temp.a.x));
Serial.printf_P(PSTR( "angles\n"
"%d \t %d \t %d\n\n"),
_pitch,
_roll,
_yaw);
//_out_vector = _cam_vector * temp;
//Serial.printf_P(PSTR( "cam\n"
// "%d \t %d \t %d\n\n"),
// (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100);
if(Serial.available() > 0){
return (0);
}
}
}
*/
/*
//static int8_t
//test_dcm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Gyro | Accel\n"));
delay(1000);
while(1){
Vector3f accels = dcm.get_accel();
Serial.print("accels.z:");
Serial.print(accels.z);
Serial.print("omega.z:");
Serial.print(omega.z);
delay(100);
if(Serial.available() > 0){
return (0);
}
}
}
*/
/*static int8_t
//test_omega(uint8_t argc, const Menu::arg *argv)
{
static byte ts_num;
float old_yaw;
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Omega"));
delay(1000);
G_Dt = .02;
while(1){
delay(20);
// IMU
// ---
read_AHRS();
float my_oz = (dcm.yaw - old_yaw) * 50;
old_yaw = dcm.yaw;
ts_num++;
if (ts_num > 2){
ts_num = 0;
//Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz);
Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz);
}
if(Serial.available() > 0){
return (0);
}
}
return (0);
}
//*/
static int8_t
test_tuning(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
while(1){
delay(200);
read_radio();
tuning();
Serial.printf_P(PSTR("tune: %1.3f\n"), tuning_value);
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_battery(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included
print_test_disabled();
return (0);
#else
print_hit_enter();
while(1){
delay(100);
read_radio();
read_battery();
if (g.battery_monitoring == 3){
Serial.printf_P(PSTR("V: %4.4f\n"),
battery_voltage1,
current_amps1,
current_total1);
} else {
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, Ah: %4.4f\n"),
battery_voltage1,
current_amps1,
current_total1);
}
APM_RC.OutputCh(MOT_1, g.rc_3.radio_in);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_in);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_in);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_in);
if(Serial.available() > 0){
return (0);
}
}
return (0);
#endif
}
static int8_t test_relay(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included
print_test_disabled();
return (0);
#else
print_hit_enter();
delay(1000);
while(1){
Serial.printf_P(PSTR("Relay on\n"));
relay.on();
delay(3000);
if(Serial.available() > 0){
return (0);
}
Serial.printf_P(PSTR("Relay off\n"));
relay.off();
delay(3000);
if(Serial.available() > 0){
return (0);
}
}
#endif
}
static int8_t
test_wp(uint8_t argc, const Menu::arg *argv)
{
delay(1000);
// save the alitude above home option
Serial.printf_P(PSTR("Hold alt "));
if(g.RTL_altitude < 0){
Serial.printf_P(PSTR("\n"));
}else{
Serial.printf_P(PSTR("of %dm\n"), (int)g.RTL_altitude / 100);
}
Serial.printf_P(PSTR("%d wp\n"), (int)g.command_total);
Serial.printf_P(PSTR("Hit rad: %d\n"), (int)g.waypoint_radius);
//Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);
report_wp();
return (0);
}
//static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) {
/*
print_hit_enter();
delay(1000);
while(1){
if (Serial3.available()){
digitalWrite(B_LED_PIN, LED_ON); // Blink Yellow LED if we are sending data to GPS
Serial1.write(Serial3.read());
digitalWrite(B_LED_PIN, LED_OFF);
}
if (Serial1.available()){
digitalWrite(C_LED_PIN, LED_ON); // Blink Red LED if we are receiving data from GPS
Serial3.write(Serial1.read());
digitalWrite(C_LED_PIN, LED_OFF);
}
if(Serial.available() > 0){
return (0);
}
}
*/
//}
/*static int8_t
//test_xbee(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
while(1){
if (Serial3.available())
Serial3.write(Serial3.read());
if(Serial.available() > 0){
return (0);
}
}
}
*/
#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t
test_baro(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included
print_test_disabled();
return (0);
#else
print_hit_enter();
init_barometer();
while(1){
delay(100);
int32_t alt = read_barometer(); // calls barometer.read()
int32_t pres = barometer.get_pressure();
int16_t temp = barometer.get_temperature();
int32_t raw_pres = barometer.get_raw_pressure();
int32_t raw_temp = barometer.get_raw_temp();
Serial.printf_P(PSTR("alt: %ldcm, pres: %ldmbar, temp: %d/100degC,"
" raw pres: %ld, raw temp: %ld\n"),
alt, pres ,temp, raw_pres, raw_temp);
if(Serial.available() > 0){
return (0);
}
}
return 0;
#endif
}
#endif
static int8_t
test_mag(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included
print_test_disabled();
return (0);
#else
if(g.compass_enabled) {
print_hit_enter();
while(1){
delay(100);
if (compass.read()) {
compass.calculate(ahrs.get_dcm_matrix());
Vector3f maggy = compass.get_offsets();
Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d\n"),
(wrap_360(ToDeg(compass.heading) * 100)) /100,
compass.mag_x,
compass.mag_y,
compass.mag_z);
} else {
Serial.println_P(PSTR("not healthy"));
}
if(Serial.available() > 0){
return (0);
}
}
} else {
Serial.printf_P(PSTR("Compass: "));
print_enabled(false);
return (0);
}
return (0);
#endif
}
/*
//static int8_t
//test_reverse(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
g.rc_4.set_reverse(0);
g.rc_4.set_pwm(APM_RC.InputCh(CH_4));
g.rc_4.servo_out = g.rc_4.control_in;
g.rc_4.calc_pwm();
Serial.printf_P(PSTR("PWM:%d input: %d\toutput%d "),
APM_RC.InputCh(CH_4),
g.rc_4.control_in,
g.rc_4.radio_out);
APM_RC.OutputCh(CH_6, g.rc_4.radio_out);
g.rc_4.set_reverse(1);
g.rc_4.set_pwm(APM_RC.InputCh(CH_4));
g.rc_4.servo_out = g.rc_4.control_in;
g.rc_4.calc_pwm();
Serial.printf_P(PSTR("\trev input: %d\toutput%d\n"),
g.rc_4.control_in,
g.rc_4.radio_out);
APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
if(Serial.available() > 0){
g.rc_4.set_reverse(0);
return (0);
}
}
}*/
#if HIL_MODE != HIL_MODE_ATTITUDE
/*
test the sonar
*/
static int8_t
test_sonar(uint8_t argc, const Menu::arg *argv)
{
if(g.sonar_enabled == false){
Serial.printf_P(PSTR("Sonar disabled\n"));
return (0);
}
// make sure sonar is initialised
init_sonar();
print_hit_enter();
while(1) {
delay(100);
Serial.printf_P(PSTR("Sonar: %d cm\n"), sonar.read());
//Serial.printf_P(PSTR("Sonar, %d, %d\n"), sonar.read(), sonar.raw_value);
if(Serial.available() > 0){
return (0);
}
}
return (0);
}
#endif
static int8_t
test_optflow(uint8_t argc, const Menu::arg *argv)
{
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled) {
Serial.printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID));
print_hit_enter();
while(1){
delay(200);
optflow.update();
Log_Write_Optflow();
Serial.printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"),
optflow.x,
optflow.dx,
optflow.y,
optflow.dy,
optflow.surface_quality);
if(Serial.available() > 0){
return (0);
}
}
} else {
Serial.printf_P(PSTR("OptFlow: "));
print_enabled(false);
}
return (0);
#else
print_test_disabled();
return (0);
#endif
}
/*
test the dataflash is working
*/
static int8_t
test_logging(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included
print_test_disabled();
return (0);
#else
Serial.println_P(PSTR("Testing dataflash logging"));
if (!DataFlash.CardInserted()) {
Serial.println_P(PSTR("ERR: No dataflash inserted"));
return 0;
}
DataFlash.ReadManufacturerID();
Serial.printf_P(PSTR("Manufacturer: 0x%02x Device: 0x%04x\n"),
(unsigned)DataFlash.df_manufacturer,
(unsigned)DataFlash.df_device);
Serial.printf_P(PSTR("NumPages: %u PageSize: %u\n"),
(unsigned)DataFlash.df_NumPages+1,
(unsigned)DataFlash.df_PageSize);
DataFlash.StartRead(DataFlash.df_NumPages+1);
Serial.printf_P(PSTR("Format version: %lx Expected format version: %lx\n"),
(unsigned long)DataFlash.ReadLong(), (unsigned long)DF_LOGGING_FORMAT);
return 0;
#endif
}
/*
static int8_t
//test_mission(uint8_t argc, const Menu::arg *argv)
{
//write out a basic mission to the EEPROM
//{
// uint8_t id; ///< command id
// uint8_t options; ///< options bitmask (1<<0 = relative altitude)
// uint8_t p1; ///< param 1
// int32_t alt; ///< param 2 - Altitude in centimeters (meters * 100)
// int32_t lat; ///< param 3 - Lattitude * 10**7
// int32_t lng; ///< param 4 - Longitude * 10**7
//}
// clear home
{Location t = {0, 0, 0, 0, 0, 0};
set_cmd_with_index(t,0);}
// CMD opt pitch alt/cm
{Location t = {MAV_CMD_NAV_TAKEOFF, WP_OPTION_RELATIVE, 0, 100, 0, 0};
set_cmd_with_index(t,1);}
if (!strcmp_P(argv[1].str, PSTR("wp"))) {
// CMD opt
{Location t = {MAV_CMD_NAV_WAYPOINT, WP_OPTION_RELATIVE, 15, 0, 0, 0};
set_cmd_with_index(t,2);}
// CMD opt
{Location t = {MAV_CMD_NAV_RETURN_TO_LAUNCH, WP_OPTION_YAW, 0, 0, 0, 0};
set_cmd_with_index(t,3);}
// CMD opt
{Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0};
set_cmd_with_index(t,4);}
} else {
//2250 = 25 meteres
// CMD opt p1 //alt //NS //WE
{Location t = {MAV_CMD_NAV_LOITER_TIME, 0, 10, 0, 0, 0}; // 19
set_cmd_with_index(t,2);}
// CMD opt dir angle/deg deg/s relative
{Location t = {MAV_CMD_CONDITION_YAW, 0, 1, 360, 60, 1};
set_cmd_with_index(t,3);}
// CMD opt
{Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0};
set_cmd_with_index(t,4);}
}
g.RTL_altitude.set_and_save(300);
g.command_total.set_and_save(4);
g.waypoint_radius.set_and_save(3);
test_wp(NULL, NULL);
return (0);
}
*/
static void print_hit_enter()
{
Serial.printf_P(PSTR("Hit Enter to exit.\n\n"));
}
static void print_test_disabled()
{
Serial.printf_P(PSTR("Sorry, not 1280 compat.\n"));
}
/*
//static void fake_out_gps()
{
static float rads;
g_gps->new_data = true;
g_gps->fix = true;
//int length = g.rc_6.control_in;
rads += .05;
if (rads > 6.28){
rads = 0;
}
g_gps->latitude = 377696000; // Y
g_gps->longitude = -1224319000; // X
g_gps->altitude = 9000; // meters * 100
//next_WP.lng = home.lng - length * sin(rads); // X
//next_WP.lat = home.lat + length * cos(rads); // Y
}
*/
/*
//static void print_motor_out(){
Serial.printf("out: R: %d, L: %d F: %d B: %d\n",
(motor_out[CH_1] - g.rc_3.radio_min),
(motor_out[CH_2] - g.rc_3.radio_min),
(motor_out[CH_3] - g.rc_3.radio_min),
(motor_out[CH_4] - g.rc_3.radio_min));
}
*/
#endif // CLI_ENABLED