ardupilot/ArduCopter/motors_tri.pde

138 lines
3.4 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == TRI_FRAME
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_4),
g.rc_speed);
#endif
}
static void motors_output_enable()
{
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(CH_TRI_YAW);
}
static void output_motors_armed()
{
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
//left front
motor_out[MOT_2] = g.rc_3.radio_out + roll_out + pitch_out;
//right front
motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out;
// rear
motor_out[MOT_4] = g.rc_3.radio_out - g.rc_2.pwm_out;
//motor_out[MOT_4] += (float)(abs(g.rc_4.control_in)) * .013;
// Tridge's stability patch
if(motor_out[MOT_1] > out_max){
motor_out[MOT_2] -= (motor_out[MOT_1] - out_max) >> 1;
motor_out[MOT_4] -= (motor_out[MOT_1] - out_max) >> 1;
motor_out[MOT_1] = out_max;
}
if(motor_out[MOT_2] > out_max){
motor_out[MOT_1] -= (motor_out[MOT_2] - out_max) >> 1;
motor_out[MOT_4] -= (motor_out[MOT_2] - out_max) >> 1;
motor_out[MOT_2] = out_max;
}
if(motor_out[MOT_4] > out_max){
motor_out[MOT_1] -= (motor_out[MOT_4] - out_max) >> 1;
motor_out[MOT_2] -= (motor_out[MOT_4] - out_max) >> 1;
motor_out[MOT_4] = out_max;
}
// limit output so motors don't stop
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
}
#endif
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
#if INSTANT_PWM == 1
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
#endif
}
static void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++){
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
}
static void output_motor_test()
{
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
APM_RC.OutputCh(MOT_2, g.rc_2.radio_min);
delay(4000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_2, g.rc_4.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
}
#endif