ardupilot/libraries/AP_Camera/Camera.cpp

278 lines
7.4 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#include "Camera.h"
#include "../RC_Channel/RC_Channel.h"
void
Camera::move()
{
Vector3<float> target_vector(0,0,1); // x, y, z to target before rotating to planes axis, values are in meters
//decide what happens to camera depending on camera mode
switch(mode)
{
case 0:
//do nothing, i.e lock camera in place
return;
break;
case 1:
//stabilize
target_vector.x=0; //east to west gives +tive value (i.e. longitude)
target_vector.y=0; //south to north gives +tive value (i.e. latitude)
target_vector.z=100; //downwards is +tive
break;
case 2:
//track target
if(g_gps->fix)
{
target_vector=get_location_vector(&current_loc,&camera_target);
}
break;
case 3: // radio manual control
case 4: // test (level the camera and point north)
break; // see code 25 lines bellow
}
Matrix3f m = dcm.get_dcm_transposed();
Vector3<float> targ = m*target_vector; //to do: find out notion of x y convention
switch(gimbal_type)
{
case 0: // pitch & roll (tilt & roll)
cam_pitch = degrees(atan2(-targ.x, targ.z)); //pitch
cam_roll = degrees(atan2(targ.y, targ.z)); //roll
break;
case 1: // yaw & pitch (pan & tilt)
cam_pitch = atan2((sqrt(sq(targ.y) + sq(targ.x)) * .01113195), targ.z) * -1;
cam_yaw = 9000 + atan2(-targ.y, targ.x) * 5729.57795;
break;
/* case 2: // pitch, roll & yaw - not started
cam_ritch = 0;
cam_yoll = 0;
cam_paw = 0;
break; */
}
//some camera modes overwrite the gimbal_type calculations
switch(mode)
{
case 3: // radio manual control
if (rc_function[CAM_PITCH])
cam_pitch = map(rc_function[CAM_PITCH]->radio_in,
rc_function[CAM_PITCH]->radio_min,
rc_function[CAM_PITCH]->radio_max,
rc_function[CAM_PITCH]->angle_min,
rc_function[CAM_PITCH]->radio_max);
if (rc_function[CAM_ROLL])
cam_roll = map(rc_function[CAM_ROLL]->radio_in,
rc_function[CAM_ROLL]->radio_min,
rc_function[CAM_ROLL]->radio_max,
rc_function[CAM_ROLL]->angle_min,
rc_function[CAM_ROLL]->radio_max);
if (rc_function[CAM_YAW])
cam_yaw = map(rc_function[CAM_YAW]->radio_in,
rc_function[CAM_YAW]->radio_min,
rc_function[CAM_YAW]->radio_max,
rc_function[CAM_YAW]->angle_min,
rc_function[CAM_YAW]->radio_max);
break;
case 4: // test (level the camera and point north)
cam_pitch = -dcm.pitch_sensor;
cam_yaw = dcm.yaw_sensor; // do not invert because the servo is mounted upside-down on my system
// TODO: the "trunk" code can invert using parameters, but this branch still can't
cam_roll = -dcm.roll_sensor;
break;
}
#if CAM_DEBUG == ENABLED
//for debugging purposes
Serial.println();
Serial.print("current_loc: lat: ");
Serial.print(current_loc.lat);
Serial.print(", lng: ");
Serial.print(current_loc.lng);
Serial.print(", alt: ");
Serial.print(current_loc.alt);
Serial.println();
Serial.print("target_loc: lat: ");
Serial.print(camera_target.lat);
Serial.print(", lng: ");
Serial.print(camera_target.lng);
Serial.print(", alt: ");
Serial.print(camera_target.alt);
Serial.print(", distance: ");
Serial.print(get_distance(&current_loc,&camera_target));
Serial.print(", bearing: ");
Serial.print(get_bearing(&current_loc,&camera_target));
Serial.println();
Serial.print("dcm_angles: roll: ");
Serial.print(degrees(dcm.roll));
Serial.print(", pitch: ");
Serial.print(degrees(dcm.pitch));
Serial.print(", yaw: ");
Serial.print(degrees(dcm.yaw));
Serial.println();
Serial.print("target_vector: x: ");
Serial.print(target_vector.x,2);
Serial.print(", y: ");
Serial.print(target_vector.y,2);
Serial.print(", z: ");
Serial.print(target_vector.z,2);
Serial.println();
Serial.print("rotated_target_vector: x: ");
Serial.print(targ.x,2);
Serial.print(", y: ");
Serial.print(targ.y,2);
Serial.print(", z: ");
Serial.print(targ.z,2);
Serial.println();
Serial.print("gimbal type 0: roll: ");
Serial.print(roll);
Serial.print(", pitch: ");
Serial.print(pitch);
Serial.println();
/* Serial.print("gimbal type 1: pitch: ");
Serial.print(pan);
Serial.print(", roll: ");
Serial.print(tilt);
Serial.println(); */
/* Serial.print("gimbal type 2: pitch: ");
Serial.print(ritch);
Serial.print(", roll: ");
Serial.print(yoll);
Serial.print(", yaw: ");
Serial.print(paw);
Serial.println(); */
#endif
}
void
Camera::set_target(struct Location target)
{
camera_target = target;
}
void
Camera::update_camera_gimbal_type()
{
// Auto detect the camera gimbal type depending on the functions assigned to the servos
if ((rc_function[CAM_YAW] == NULL) && (rc_function[CAM_PITCH] != NULL) && (rc_function[CAM_ROLL] != NULL))
{
gimbal_type = 0;
}
if ((rc_function[CAM_YAW] != NULL) && (rc_function[CAM_PITCH] != NULL) && (rc_function[CAM_ROLL] == NULL))
{
gimbal_type = 1;
}
if ((rc_function[CAM_YAW] != NULL) && (rc_function[CAM_PITCH] != NULL) && (rc_function[CAM_ROLL] != NULL))
{
gimbal_type = 2;
}
}
void
Camera::servo_pic() // Servo operated camera
{
if (rc_function[CAM_TRIGGER])
{
cam_trigger = rc_function[CAM_TRIGGER]->radio_max;
keep_cam_trigg_active_cycles = 2; // leave a message that it should be active for two event loop cycles
}
}
void
Camera::relay_pic() // basic relay activation
{
relay_on();
keep_cam_trigg_active_cycles = 2; // leave a message that it should be active for two event loop cycles
}
void
Camera::throttle_pic() // pictures blurry? use this trigger. Turns off the throttle until for # of cycles of medium loop then takes the picture and re-enables the throttle.
{
g.channel_throttle.radio_out = g.throttle_min;
if (thr_pic == 10){
servo_pic(); // triggering method
thr_pic = 0;
g.channel_throttle.radio_out = g.throttle_cruise;
}
thr_pic++;
}
void
Camera::distance_pic() // pictures blurry? use this trigger. Turns off the throttle until closer to waypoint then takes the picture and re-enables the throttle.
{
g.channel_throttle.radio_out = g.throttle_min;
if (wp_distance < 3){
servo_pic(); // triggering method
g.channel_throttle.radio_out = g.throttle_cruise;
}
}
void
Camera::NPN_pic() // hacked the circuit to run a transistor? use this trigger to send output.
{
// To Do: Assign pin spare pin for output
digitalWrite(camtrig, HIGH);
keep_cam_trigg_active_cycles = 1; // leave a message that it should be active for two event loop cycles
}
// single entry point to take pictures
void
Camera::trigger_pic()
{
switch (trigger_type)
{
case 0:
servo_pic(); // Servo operated camera
break;
case 1:
relay_pic(); // basic relay activation
break;
case 2:
throttle_pic(); // pictures blurry? use this trigger. Turns off the throttle until for # of cycles of medium loop then takes the picture and re-enables the throttle.
break;
case 3:
distance_pic(); // pictures blurry? use this trigger. Turns off the throttle until closer to waypoint then takes the picture and re-enables the throttle.
break;
case 4:
NPN_pic(); // hacked the circuit to run a transistor? use this trigger to send output.
break;
}
}
// de-activate the trigger after some delay, but without using a delay() function
void
Camera::trigger_pic_cleanup()
{
if (keep_cam_trigg_active_cycles)
{
keep_cam_trigg_active_cycles --;
}
else
{
switch (trigger_type)
{
case 0:
case 2:
case 3:
if (rc_function[CAM_TRIGGER])
{
cam_trigger = rc_function[CAM_TRIGGER]->radio_min;
}
break;
case 1:
relay_off();
break;
case 4:
digitalWrite(camtrig, LOW);
break;
}
}
}