ardupilot/libraries/AP_Compass/AP_Compass_LSM303D.cpp

545 lines
16 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_Math/AP_Math.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_Compass_LSM303D.h"
extern const AP_HAL::HAL& hal;
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include <AP_HAL_Linux/GPIO.h>
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT
#define LSM303D_DRDY_M_PIN RPI_GPIO_27
#endif
#endif
#ifndef LSM303D_DRDY_M_PIN
#define LSM303D_DRDY_M_PIN -1
#endif
/* SPI protocol address bits */
#define DIR_READ (1<<7)
#define DIR_WRITE (0<<7)
#define ADDR_INCREMENT (1<<6)
/* register addresses: A: accel, M: mag, T: temp */
#define ADDR_WHO_AM_I 0x0F
#define WHO_I_AM 0x49
#define ADDR_OUT_TEMP_L 0x05
#define ADDR_OUT_TEMP_H 0x06
#define ADDR_STATUS_M 0x07
#define ADDR_OUT_X_L_M 0x08
#define ADDR_OUT_X_H_M 0x09
#define ADDR_OUT_Y_L_M 0x0A
#define ADDR_OUT_Y_H_M 0x0B
#define ADDR_OUT_Z_L_M 0x0C
#define ADDR_OUT_Z_H_M 0x0D
#define ADDR_INT_CTRL_M 0x12
#define ADDR_INT_SRC_M 0x13
#define ADDR_REFERENCE_X 0x1c
#define ADDR_REFERENCE_Y 0x1d
#define ADDR_REFERENCE_Z 0x1e
#define ADDR_STATUS_A 0x27
#define ADDR_OUT_X_L_A 0x28
#define ADDR_OUT_X_H_A 0x29
#define ADDR_OUT_Y_L_A 0x2A
#define ADDR_OUT_Y_H_A 0x2B
#define ADDR_OUT_Z_L_A 0x2C
#define ADDR_OUT_Z_H_A 0x2D
#define ADDR_CTRL_REG0 0x1F
#define ADDR_CTRL_REG1 0x20
#define ADDR_CTRL_REG2 0x21
#define ADDR_CTRL_REG3 0x22
#define ADDR_CTRL_REG4 0x23
#define ADDR_CTRL_REG5 0x24
#define ADDR_CTRL_REG6 0x25
#define ADDR_CTRL_REG7 0x26
#define ADDR_FIFO_CTRL 0x2e
#define ADDR_FIFO_SRC 0x2f
#define ADDR_IG_CFG1 0x30
#define ADDR_IG_SRC1 0x31
#define ADDR_IG_THS1 0x32
#define ADDR_IG_DUR1 0x33
#define ADDR_IG_CFG2 0x34
#define ADDR_IG_SRC2 0x35
#define ADDR_IG_THS2 0x36
#define ADDR_IG_DUR2 0x37
#define ADDR_CLICK_CFG 0x38
#define ADDR_CLICK_SRC 0x39
#define ADDR_CLICK_THS 0x3a
#define ADDR_TIME_LIMIT 0x3b
#define ADDR_TIME_LATENCY 0x3c
#define ADDR_TIME_WINDOW 0x3d
#define ADDR_ACT_THS 0x3e
#define ADDR_ACT_DUR 0x3f
#define REG1_RATE_BITS_A ((1<<7) | (1<<6) | (1<<5) | (1<<4))
#define REG1_POWERDOWN_A ((0<<7) | (0<<6) | (0<<5) | (0<<4))
#define REG1_RATE_3_125HZ_A ((0<<7) | (0<<6) | (0<<5) | (1<<4))
#define REG1_RATE_6_25HZ_A ((0<<7) | (0<<6) | (1<<5) | (0<<4))
#define REG1_RATE_12_5HZ_A ((0<<7) | (0<<6) | (1<<5) | (1<<4))
#define REG1_RATE_25HZ_A ((0<<7) | (1<<6) | (0<<5) | (0<<4))
#define REG1_RATE_50HZ_A ((0<<7) | (1<<6) | (0<<5) | (1<<4))
#define REG1_RATE_100HZ_A ((0<<7) | (1<<6) | (1<<5) | (0<<4))
#define REG1_RATE_200HZ_A ((0<<7) | (1<<6) | (1<<5) | (1<<4))
#define REG1_RATE_400HZ_A ((1<<7) | (0<<6) | (0<<5) | (0<<4))
#define REG1_RATE_800HZ_A ((1<<7) | (0<<6) | (0<<5) | (1<<4))
#define REG1_RATE_1600HZ_A ((1<<7) | (0<<6) | (1<<5) | (0<<4))
#define REG1_BDU_UPDATE (1<<3)
#define REG1_Z_ENABLE_A (1<<2)
#define REG1_Y_ENABLE_A (1<<1)
#define REG1_X_ENABLE_A (1<<0)
#define REG2_ANTIALIAS_FILTER_BW_BITS_A ((1<<7) | (1<<6))
#define REG2_AA_FILTER_BW_773HZ_A ((0<<7) | (0<<6))
#define REG2_AA_FILTER_BW_194HZ_A ((0<<7) | (1<<6))
#define REG2_AA_FILTER_BW_362HZ_A ((1<<7) | (0<<6))
#define REG2_AA_FILTER_BW_50HZ_A ((1<<7) | (1<<6))
#define REG2_FULL_SCALE_BITS_A ((1<<5) | (1<<4) | (1<<3))
#define REG2_FULL_SCALE_2G_A ((0<<5) | (0<<4) | (0<<3))
#define REG2_FULL_SCALE_4G_A ((0<<5) | (0<<4) | (1<<3))
#define REG2_FULL_SCALE_6G_A ((0<<5) | (1<<4) | (0<<3))
#define REG2_FULL_SCALE_8G_A ((0<<5) | (1<<4) | (1<<3))
#define REG2_FULL_SCALE_16G_A ((1<<5) | (0<<4) | (0<<3))
#define REG5_ENABLE_T (1<<7)
#define REG5_RES_HIGH_M ((1<<6) | (1<<5))
#define REG5_RES_LOW_M ((0<<6) | (0<<5))
#define REG5_RATE_BITS_M ((1<<4) | (1<<3) | (1<<2))
#define REG5_RATE_3_125HZ_M ((0<<4) | (0<<3) | (0<<2))
#define REG5_RATE_6_25HZ_M ((0<<4) | (0<<3) | (1<<2))
#define REG5_RATE_12_5HZ_M ((0<<4) | (1<<3) | (0<<2))
#define REG5_RATE_25HZ_M ((0<<4) | (1<<3) | (1<<2))
#define REG5_RATE_50HZ_M ((1<<4) | (0<<3) | (0<<2))
#define REG5_RATE_100HZ_M ((1<<4) | (0<<3) | (1<<2))
#define REG5_RATE_DO_NOT_USE_M ((1<<4) | (1<<3) | (0<<2))
#define REG6_FULL_SCALE_BITS_M ((1<<6) | (1<<5))
#define REG6_FULL_SCALE_2GA_M ((0<<6) | (0<<5))
#define REG6_FULL_SCALE_4GA_M ((0<<6) | (1<<5))
#define REG6_FULL_SCALE_8GA_M ((1<<6) | (0<<5))
#define REG6_FULL_SCALE_12GA_M ((1<<6) | (1<<5))
#define REG7_CONT_MODE_M ((0<<1) | (0<<0))
#define INT_CTRL_M 0x12
#define INT_SRC_M 0x13
/* default values for this device */
#define LSM303D_ACCEL_DEFAULT_RANGE_G 8
#define LSM303D_ACCEL_DEFAULT_RATE 800
#define LSM303D_ACCEL_DEFAULT_ONCHIP_FILTER_FREQ 50
#define LSM303D_ACCEL_DEFAULT_DRIVER_FILTER_FREQ 30
#define LSM303D_MAG_DEFAULT_RANGE_GA 2
#define LSM303D_MAG_DEFAULT_RATE 100
#define LSM303D_DEBUG 0
#if LSM303D_DEBUG
#include <stdio.h>
#define error(...) fprintf(stderr, __VA_ARGS__)
#define debug(...) hal.console->printf(__VA_ARGS__)
#define ASSERT(x) assert(x)
#else
#define error(...)
#define debug(...)
#define ASSERT(x)
#endif
// constructor
AP_Compass_LSM303D::AP_Compass_LSM303D(Compass &compass):
AP_Compass_Backend(compass)
{}
// detect the sensor
AP_Compass_Backend *AP_Compass_LSM303D::detect_spi(Compass &compass)
{
AP_Compass_LSM303D *sensor = new AP_Compass_LSM303D(compass);
if (sensor == NULL) {
return NULL;
}
if (!sensor->init()) {
delete sensor;
return NULL;
}
return sensor;
}
uint8_t AP_Compass_LSM303D::_register_read(uint8_t reg)
{
uint8_t addr = reg | 0x80; // Set most significant bit
uint8_t tx[2];
uint8_t rx[2];
tx[0] = addr;
tx[1] = 0;
_spi->transaction(tx, rx, 2);
return rx[1];
}
void AP_Compass_LSM303D::_register_write(uint8_t reg, uint8_t val)
{
uint8_t tx[2];
uint8_t rx[2];
tx[0] = reg;
tx[1] = val;
_spi->transaction(tx, rx, 2);
}
void AP_Compass_LSM303D::_register_modify(uint8_t reg, uint8_t clearbits, uint8_t setbits)
{
uint8_t val;
val = _register_read(reg);
val &= ~clearbits;
val |= setbits;
_register_write(reg, val);
}
/**
* Return true if the LSM303D has new data available for both the mag and
* the accels.
*/
bool AP_Compass_LSM303D::_data_ready()
{
return (_drdy_pin_m->read()) != 0;
}
// Read Sensor data
bool AP_Compass_LSM303D::_read_raw()
{
if (_register_read(ADDR_CTRL_REG7) != _reg7_expected) {
hal.console->println(
"LSM303D _read_data_transaction_accel: _reg7_expected unexpected");
// reset();
return false;
}
if (!_data_ready()) {
return false;
}
struct PACKED {
uint8_t cmd;
uint8_t status;
int16_t x;
int16_t y;
int16_t z;
} raw_mag_report_tx;
struct PACKED {
uint8_t cmd;
uint8_t status;
int16_t x;
int16_t y;
int16_t z;
} raw_mag_report_rx;
/* fetch data from the sensor */
memset(&raw_mag_report_tx, 0, sizeof(raw_mag_report_tx));
memset(&raw_mag_report_rx, 0, sizeof(raw_mag_report_rx));
raw_mag_report_tx.cmd = ADDR_STATUS_M | DIR_READ | ADDR_INCREMENT;
_spi->transaction((uint8_t *)&raw_mag_report_tx, (uint8_t *)&raw_mag_report_rx, sizeof(raw_mag_report_tx));
_mag_x = raw_mag_report_rx.x;
_mag_y = raw_mag_report_rx.y;
_mag_z = raw_mag_report_rx.z;
if (is_zero(_mag_x) && is_zero(_mag_y) && is_zero(_mag_z)) {
return false;
}
return true;
}
// Public Methods //////////////////////////////////////////////////////////////
bool
AP_Compass_LSM303D::init()
{
// TODO: support users without data ready pin
if (LSM303D_DRDY_M_PIN < 0)
return false;
hal.scheduler->suspend_timer_procs();
_spi = hal.spi->device(AP_HAL::SPIDevice_LSM303D);
_spi_sem = _spi->get_semaphore();
_drdy_pin_m = hal.gpio->channel(LSM303D_DRDY_M_PIN);
_drdy_pin_m->mode(HAL_GPIO_INPUT);
// Test WHOAMI
uint8_t whoami = _register_read(ADDR_WHO_AM_I);
if (whoami != WHO_I_AM) {
hal.console->printf("LSM303D: unexpected WHOAMI 0x%x\n", (unsigned)whoami);
AP_HAL::panic("LSM303D: bad WHOAMI");
}
uint8_t tries = 0;
do {
// TODO: don't try to init 25 times
bool success = _hardware_init();
if (success) {
hal.scheduler->delay(5+2);
if (!_spi_sem->take(100)) {
AP_HAL::panic("LSM303D: Unable to get semaphore");
}
if (_data_ready()) {
_spi_sem->give();
break;
} else {
hal.console->println(
"LSM303D startup failed: no data ready");
}
_spi_sem->give();
}
if (tries++ > 5) {
AP_HAL::panic("PANIC: failed to boot LSM303D 5 times");
}
} while (1);
_scaling[0] = 1.0;
_scaling[1] = 1.0;
_scaling[2] = 1.0;
/* register the compass instance in the frontend */
_compass_instance = register_compass();
set_dev_id(_compass_instance, get_dev_id());
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX && CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT
set_external(_compass_instance, false);
#endif
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Compass_LSM303D::_update, void));
_spi_sem->give();
hal.scheduler->resume_timer_procs();
_initialised = true;
return _initialised;
}
uint32_t AP_Compass_LSM303D::get_dev_id()
{
return AP_COMPASS_TYPE_LSM303D;
}
bool AP_Compass_LSM303D::_hardware_init(void)
{
if (!_spi_sem->take(100)) {
AP_HAL::panic("LSM303D: Unable to get semaphore");
}
// initially run the bus at low speed
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
// ensure the chip doesn't interpret any other bus traffic as I2C
_disable_i2c();
/* enable mag */
_reg7_expected = REG7_CONT_MODE_M;
_register_write(ADDR_CTRL_REG7, _reg7_expected);
_register_write(ADDR_CTRL_REG5, REG5_RES_HIGH_M);
_register_write(ADDR_CTRL_REG4, 0x04); // DRDY on MAG on INT2
_mag_set_range(LSM303D_MAG_DEFAULT_RANGE_GA);
_mag_set_samplerate(LSM303D_MAG_DEFAULT_RATE);
// TODO: Software filtering
// now that we have initialised, we set the SPI bus speed to high
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
_spi_sem->give();
return true;
}
void AP_Compass_LSM303D::_update()
{
if (AP_HAL::micros() - _last_update_timestamp < 10000) {
return;
}
if (!_spi_sem->take_nonblocking()) {
return;
}
_collect_samples();
_last_update_timestamp = AP_HAL::micros();
_spi_sem->give();
}
void AP_Compass_LSM303D::_collect_samples()
{
if (!_initialised) {
return;
}
if (!_read_raw()) {
error("_read_raw() failed\n");
} else {
Vector3f raw_field = Vector3f(_mag_x, _mag_y, _mag_z) * _mag_range_scale;
uint32_t time_us = AP_HAL::micros();
// rotate raw_field from sensor frame to body frame
rotate_field(raw_field, _compass_instance);
// publish raw_field (uncorrected point sample) for _scaling use
publish_raw_field(raw_field, time_us, _compass_instance);
// correct raw_field for known errors
correct_field(raw_field, _compass_instance);
// publish raw_field (corrected point sample) for EKF use
publish_unfiltered_field(raw_field, time_us, _compass_instance);
_mag_x_accum += raw_field.x;
_mag_y_accum += raw_field.y;
_mag_z_accum += raw_field.z;
_accum_count++;
if (_accum_count == 10) {
_mag_x_accum /= 2;
_mag_y_accum /= 2;
_mag_z_accum /= 2;
_accum_count = 5;
}
}
}
// Read Sensor data
void AP_Compass_LSM303D::read()
{
if (!_initialised) {
// someone has tried to enable a compass for the first time
// mid-flight .... we can't do that yet (especially as we won't
// have the right orientation!)
return;
}
if (_accum_count == 0) {
/* We're not ready to publish*/
return;
}
hal.scheduler->suspend_timer_procs();
Vector3f field(_mag_x_accum * _scaling[0],
_mag_y_accum * _scaling[1],
_mag_z_accum * _scaling[2]);
field /= _accum_count;
_accum_count = 0;
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0;
hal.scheduler->resume_timer_procs();
publish_filtered_field(field, _compass_instance);
}
void AP_Compass_LSM303D::_disable_i2c(void)
{
// TODO: use the register names
uint8_t a = _register_read(0x02);
_register_write(0x02, (0x10 | a));
a = _register_read(0x02);
_register_write(0x02, (0xF7 & a));
a = _register_read(0x15);
_register_write(0x15, (0x80 | a));
a = _register_read(0x02);
_register_write(0x02, (0xE7 & a));
}
uint8_t AP_Compass_LSM303D::_mag_set_range(uint8_t max_ga)
{
uint8_t setbits = 0;
uint8_t clearbits = REG6_FULL_SCALE_BITS_M;
float new_scale_ga_digit = 0.0f;
if (max_ga == 0)
max_ga = 12;
if (max_ga <= 2) {
_mag_range_ga = 2;
setbits |= REG6_FULL_SCALE_2GA_M;
new_scale_ga_digit = 0.080f;
} else if (max_ga <= 4) {
_mag_range_ga = 4;
setbits |= REG6_FULL_SCALE_4GA_M;
new_scale_ga_digit = 0.160f;
} else if (max_ga <= 8) {
_mag_range_ga = 8;
setbits |= REG6_FULL_SCALE_8GA_M;
new_scale_ga_digit = 0.320f;
} else if (max_ga <= 12) {
_mag_range_ga = 12;
setbits |= REG6_FULL_SCALE_12GA_M;
new_scale_ga_digit = 0.479f;
} else {
return -1;
}
_mag_range_scale = new_scale_ga_digit;
_register_modify(ADDR_CTRL_REG6, clearbits, setbits);
return 0;
}
uint8_t AP_Compass_LSM303D::_mag_set_samplerate(uint16_t frequency)
{
uint8_t setbits = 0;
uint8_t clearbits = REG5_RATE_BITS_M;
if (frequency == 0)
frequency = 100;
if (frequency <= 25) {
setbits |= REG5_RATE_25HZ_M;
_mag_samplerate = 25;
} else if (frequency <= 50) {
setbits |= REG5_RATE_50HZ_M;
_mag_samplerate = 50;
} else if (frequency <= 100) {
setbits |= REG5_RATE_100HZ_M;
_mag_samplerate = 100;
} else {
return -1;
}
_register_modify(ADDR_CTRL_REG5, clearbits, setbits);
return 0;
}