ardupilot/libraries/AP_Proximity/AP_Proximity_DroneCAN.cpp

211 lines
8.1 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Proximity_DroneCAN.h"
#if AP_PROXIMITY_DRONECAN_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_CANManager/AP_CANManager.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <GCS_MAVLink/GCS.h>
#include <ardupilot/equipment/proximity_sensor/Proximity.hpp>
extern const AP_HAL::HAL& hal;
//DroneCAN Frontend Registry Binder ARDUPILOT_EQUIPMENT_PROXIMITY_SENSOR_PROXIMITY
UC_REGISTRY_BINDER(MeasurementCb, ardupilot::equipment::proximity_sensor::Proximity);
ObjectBuffer_TS<AP_Proximity_DroneCAN::ObstacleItem> AP_Proximity_DroneCAN::items(50);
#define PROXIMITY_TIMEOUT_MS 500 // distance messages must arrive within this many milliseconds
//links the Proximity DroneCAN message to this backend
void AP_Proximity_DroneCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan)
{
if (ap_uavcan == nullptr) {
return;
}
auto* node = ap_uavcan->get_node();
uavcan::Subscriber<ardupilot::equipment::proximity_sensor::Proximity, MeasurementCb> *measurement_listener;
measurement_listener = new uavcan::Subscriber<ardupilot::equipment::proximity_sensor::Proximity, MeasurementCb>(*node);
if (measurement_listener == nullptr) {
AP_BoardConfig::allocation_error("DroneCAN_PRX");
}
// Register method to handle incoming Proximity measurement
const int measurement_listener_res = measurement_listener->start(MeasurementCb(ap_uavcan, &handle_measurement));
if (measurement_listener_res < 0) {
AP_BoardConfig::allocation_error("DroneCAN Proximity subscriber start problem\n\r");
return;
}
}
//Method to find the backend relating to the node id
AP_Proximity_DroneCAN* AP_Proximity_DroneCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t address, bool create_new)
{
if (ap_uavcan == nullptr) {
return nullptr;
}
AP_Proximity *prx = AP::proximity();
if (prx == nullptr) {
return nullptr;
}
AP_Proximity_DroneCAN* driver = nullptr;
//Scan through the proximity type params to find DroneCAN with matching address.
for (uint8_t i = 0; i < PROXIMITY_MAX_INSTANCES; i++) {
if ((AP_Proximity::Type)prx->params[i].type.get() == AP_Proximity::Type::DroneCAN &&
prx->params[i].address == address) {
driver = (AP_Proximity_DroneCAN*)prx->drivers[i];
}
//Double check if the driver was initialised as DroneCAN Type
if (driver != nullptr && (driver->_backend_type == AP_Proximity::Type::DroneCAN)) {
if (driver->_ap_uavcan == ap_uavcan &&
driver->_node_id == node_id) {
return driver;
} else {
//we found a possible duplicate addressed sensor
//we return nothing in such scenario
return nullptr;
}
}
}
if (create_new) {
for (uint8_t i = 0; i < PROXIMITY_MAX_INSTANCES; i++) {
if ((AP_Proximity::Type)prx->params[i].type.get() == AP_Proximity::Type::DroneCAN &&
prx->params[i].address == address) {
WITH_SEMAPHORE(prx->detect_sem);
if (prx->drivers[i] != nullptr) {
//we probably initialised this driver as something else, reboot is required for setting
//it up as DroneCAN type
return nullptr;
}
prx->drivers[i] = new AP_Proximity_DroneCAN(*prx, prx->state[i], prx->params[i]);
driver = (AP_Proximity_DroneCAN*)prx->drivers[i];
if (driver == nullptr) {
break;
}
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Prx[%u]: added DroneCAN node %u addr %u",
unsigned(i), unsigned(node_id), unsigned(address));
if (is_zero(prx->params[i].max_m) && is_zero(prx->params[i].min_m)) {
// GCS reporting will be incorrect if min/max are not set
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "Configure PRX%u_MIN and PRX%u_MAX",
unsigned(i), unsigned(i));
}
//Assign node id and respective dronecan driver, for identification
if (driver->_ap_uavcan == nullptr) {
driver->_ap_uavcan = ap_uavcan;
driver->_node_id = node_id;
break;
}
}
}
}
return driver;
}
// update the state of the sensor
void AP_Proximity_DroneCAN::update(void)
{
// check for timeout and set health status
if ((_last_update_ms == 0 || (AP_HAL::millis() - _last_update_ms > PROXIMITY_TIMEOUT_MS))) {
set_status(AP_Proximity::Status::NoData);
} else {
set_status(_status);
}
if (_status == AP_Proximity::Status::Good) {
ObstacleItem object_item;
WITH_SEMAPHORE(_sem);
while (items.pop(object_item)) {
const AP_Proximity_Boundary_3D::Face face = frontend.boundary.get_face(object_item.pitch_deg, object_item.yaw_deg);
if (!is_zero(object_item.distance_m) && !ignore_reading(object_item.pitch_deg, object_item.yaw_deg, object_item.distance_m, false)) {
// update boundary used for avoidance
frontend.boundary.set_face_attributes(face, object_item.pitch_deg, object_item.yaw_deg, object_item.distance_m, state.instance);
// update OA database
database_push(object_item.pitch_deg, object_item.yaw_deg, object_item.distance_m);
}
}
}
}
// get maximum and minimum distances (in meters)
float AP_Proximity_DroneCAN::distance_max() const
{
if (is_zero(params.max_m)) {
// GCS will not report correct correct value if max isn't set properly
// This is a arbitrary value to prevent the above issue
return 100.0f;
}
return params.max_m;
}
float AP_Proximity_DroneCAN::distance_min() const
{
return params.min_m;
}
//Proximity message handler
void AP_Proximity_DroneCAN::handle_measurement(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MeasurementCb &cb)
{
//fetch the matching DroneCAN driver, node id and sensor id backend instance
AP_Proximity_DroneCAN* driver = get_uavcan_backend(ap_uavcan, node_id, cb.msg->sensor_id, true);
if (driver == nullptr) {
return;
}
WITH_SEMAPHORE(driver->_sem);
switch (cb.msg->reading_type) {
case ardupilot::equipment::proximity_sensor::Proximity::READING_TYPE_GOOD: {
//update the states in backend instance
driver->_last_update_ms = AP_HAL::millis();
driver->_status = AP_Proximity::Status::Good;
const ObstacleItem item = {cb.msg->yaw, cb.msg->pitch, cb.msg->distance};
if (driver->items.space()) {
// ignore reading if no place to put it in the queue
driver->items.push(item);
}
break;
}
//Additional states supported by Proximity message
case ardupilot::equipment::proximity_sensor::Proximity::READING_TYPE_NOT_CONNECTED: {
driver->_last_update_ms = AP_HAL::millis();
driver->_status = AP_Proximity::Status::NotConnected;
break;
}
case ardupilot::equipment::proximity_sensor::Proximity::READING_TYPE_NO_DATA: {
driver->_last_update_ms = AP_HAL::millis();
driver->_status = AP_Proximity::Status::NoData;
break;
}
default:
break;
}
}
#endif // AP_PROXIMITY_DRONECAN_ENABLED