ardupilot/libraries/AP_Math/AP_Math.cpp

315 lines
8.8 KiB
C++

#include "AP_Math.h"
#include <float.h>
#include <AP_InternalError/AP_InternalError.h>
/*
* is_equal(): Integer implementation, provided for convenience and
* compatibility with old code. Expands to the same as comparing the values
* directly
*/
template <typename Arithmetic1, typename Arithmetic2>
typename std::enable_if<std::is_integral<typename std::common_type<Arithmetic1, Arithmetic2>::type>::value ,bool>::type
is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2)
{
typedef typename std::common_type<Arithmetic1, Arithmetic2>::type common_type;
return static_cast<common_type>(v_1) == static_cast<common_type>(v_2);
}
/*
* is_equal(): double/float implementation - takes into account
* std::numeric_limits<T>::epsilon() to return if 2 values are equal.
*/
template <typename Arithmetic1, typename Arithmetic2>
typename std::enable_if<std::is_floating_point<typename std::common_type<Arithmetic1, Arithmetic2>::type>::value, bool>::type
is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2)
{
#ifdef ALLOW_DOUBLE_MATH_FUNCTIONS
typedef typename std::common_type<Arithmetic1, Arithmetic2>::type common_type;
typedef typename std::remove_cv<common_type>::type common_type_nonconst;
if (std::is_same<double, common_type_nonconst>::value) {
return fabs(v_1 - v_2) < std::numeric_limits<double>::epsilon();
}
#endif
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wabsolute-value"
// clang doesn't realise we catch the double case above and warns
// about loss of precision here.
return fabsf(v_1 - v_2) < std::numeric_limits<float>::epsilon();
#pragma clang diagnostic pop
}
template bool is_equal<int>(const int v_1, const int v_2);
template bool is_equal<short>(const short v_1, const short v_2);
template bool is_equal<long>(const long v_1, const long v_2);
template bool is_equal<float>(const float v_1, const float v_2);
template bool is_equal<double>(const double v_1, const double v_2);
template <typename T>
float safe_asin(const T v)
{
const float f = static_cast<const float>(v);
if (isnan(f)) {
return 0.0f;
}
if (f >= 1.0f) {
return static_cast<float>(M_PI_2);
}
if (f <= -1.0f) {
return static_cast<float>(-M_PI_2);
}
return asinf(f);
}
template float safe_asin<int>(const int v);
template float safe_asin<short>(const short v);
template float safe_asin<float>(const float v);
template float safe_asin<double>(const double v);
template <typename T>
float safe_sqrt(const T v)
{
float ret = sqrtf(static_cast<float>(v));
if (isnan(ret)) {
return 0;
}
return ret;
}
template float safe_sqrt<int>(const int v);
template float safe_sqrt<short>(const short v);
template float safe_sqrt<float>(const float v);
template float safe_sqrt<double>(const double v);
/*
* linear interpolation based on a variable in a range
*/
float linear_interpolate(float low_output, float high_output,
float var_value,
float var_low, float var_high)
{
if (var_value <= var_low) {
return low_output;
}
if (var_value >= var_high) {
return high_output;
}
float p = (var_value - var_low) / (var_high - var_low);
return low_output + p * (high_output - low_output);
}
/* cubic "expo" curve generator
* alpha range: [0,1] min to max expo
* input range: [-1,1]
*/
float expo_curve(float alpha, float x)
{
return (1.0f - alpha) * x + alpha * x * x * x;
}
/* throttle curve generator
* thr_mid: output at mid stick
* alpha: expo coefficient
* thr_in: [0-1]
*/
float throttle_curve(float thr_mid, float alpha, float thr_in)
{
float alpha2 = alpha + 1.25 * (1.0f - alpha) * (0.5f - thr_mid) / 0.5f;
alpha2 = constrain_float(alpha2, 0.0f, 1.0f);
float thr_out = 0.0f;
if (thr_in < 0.5f) {
float t = linear_interpolate(-1.0f, 0.0f, thr_in, 0.0f, 0.5f);
thr_out = linear_interpolate(0.0f, thr_mid, expo_curve(alpha, t), -1.0f, 0.0f);
} else {
float t = linear_interpolate(0.0f, 1.0f, thr_in, 0.5f, 1.0f);
thr_out = linear_interpolate(thr_mid, 1.0f, expo_curve(alpha2, t), 0.0f, 1.0f);
}
return thr_out;
}
template <typename T>
T wrap_180(const T angle, T unit_mod)
{
auto res = wrap_360(angle, unit_mod);
if (res > T(180) * unit_mod) {
res -= T(360) * unit_mod;
}
return res;
}
template int wrap_180<int>(const int angle, int unit_mod);
template short wrap_180<short>(const short angle, short unit_mod);
template float wrap_180<float>(const float angle, float unit_mod);
#ifdef ALLOW_DOUBLE_MATH_FUNCTIONS
template double wrap_180<double>(const double angle, double unit_mod);
#endif
float wrap_360(const float angle, float unit_mod)
{
const auto ang_360 = float(360) * unit_mod;
auto res = fmodf(angle, ang_360);
if (res < 0) {
res += ang_360;
}
return res;
}
#ifdef ALLOW_DOUBLE_MATH_FUNCTIONS
double wrap_360(const double angle, double unit_mod)
{
const auto ang_360 = double(360) * unit_mod;
auto res = fmod(angle, ang_360);
if (res < 0) {
res += ang_360;
}
return res;
}
#endif
int wrap_360(const int angle, int unit_mod)
{
const int ang_360 = 360 * unit_mod;
int res = angle % ang_360;
if (res < 0) {
res += ang_360;
}
return res;
}
template <typename T>
float wrap_PI(const T radian)
{
auto res = wrap_2PI(radian);
if (res > M_PI) {
res -= M_2PI;
}
return res;
}
template float wrap_PI<int>(const int radian);
template float wrap_PI<short>(const short radian);
template float wrap_PI<float>(const float radian);
template float wrap_PI<double>(const double radian);
template <typename T>
float wrap_2PI(const T radian)
{
float res = fmodf(static_cast<float>(radian), M_2PI);
if (res < 0) {
res += M_2PI;
}
return res;
}
template float wrap_2PI<int>(const int radian);
template float wrap_2PI<short>(const short radian);
template float wrap_2PI<float>(const float radian);
template float wrap_2PI<double>(const double radian);
template <typename T>
T constrain_value(const T amt, const T low, const T high)
{
// the check for NaN as a float prevents propagation of floating point
// errors through any function that uses constrain_value(). The normal
// float semantics already handle -Inf and +Inf
if (isnan(amt)) {
AP::internalerror().error(AP_InternalError::error_t::constraining_nan);
return (low + high) / 2;
}
if (amt < low) {
return low;
}
if (amt > high) {
return high;
}
return amt;
}
template int constrain_value<int>(const int amt, const int low, const int high);
template long constrain_value<long>(const long amt, const long low, const long high);
template long long constrain_value<long long>(const long long amt, const long long low, const long long high);
template short constrain_value<short>(const short amt, const short low, const short high);
template float constrain_value<float>(const float amt, const float low, const float high);
template double constrain_value<double>(const double amt, const double low, const double high);
/*
simple 16 bit random number generator
*/
uint16_t get_random16(void)
{
static uint32_t m_z = 1234;
static uint32_t m_w = 76542;
m_z = 36969 * (m_z & 0xFFFFu) + (m_z >> 16);
m_w = 18000 * (m_w & 0xFFFFu) + (m_w >> 16);
return ((m_z << 16) + m_w) & 0xFFFF;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
// generate a random float between -1 and 1, for use in SITL
float rand_float(void)
{
return ((((unsigned)random()) % 2000000) - 1.0e6) / 1.0e6;
}
Vector3f rand_vec3f(void)
{
Vector3f v = Vector3f(rand_float(),
rand_float(),
rand_float());
if (!is_zero(v.length())) {
v.normalize();
}
return v;
}
#endif
bool is_valid_octal(uint16_t octal)
{
// treat "octal" as decimal and test if any decimal digit is > 7
if (octal > 7777) {
return false;
} else if (octal % 10 > 7) {
return false;
} else if ((octal % 100)/10 > 7) {
return false;
} else if ((octal % 1000)/100 > 7) {
return false;
} else if ((octal % 10000)/1000 > 7) {
return false;
}
return true;
}
/*
return true if two rotations are equivalent
This copes with the fact that we have some duplicates, like ROLL_180_YAW_90 and PITCH_180_YAW_270
*/
bool rotation_equal(enum Rotation r1, enum Rotation r2)
{
if (r1 == r2) {
return true;
}
Vector3f v(1,2,3);
Vector3f v1 = v;
Vector3f v2 = v;
v1.rotate(r1);
v2.rotate(r2);
return (v1 - v2).length() < 0.001;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
// fill an array of float with NaN, used to invalidate memory in SITL
void fill_nanf(float *f, uint16_t count)
{
while (count--) {
*f++ = std::numeric_limits<float>::signaling_NaN();
}
}
#endif