ardupilot/ArduCopter/Attitude.pde
Jason Short 47e4c875e1 Cleanup
removed Iterm experiment - no noticeable effect in actual flight
2011-12-16 20:47:23 -08:00

336 lines
8.0 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static int
get_stabilize_roll(int32_t target_angle)
{
int32_t error;
int32_t rate;
// angle error
error = wrap_180(target_angle - dcm.roll_sensor);
#if FRAME_CONFIG == HELI_FRAME
// limit the error we're feeding to the PID
error = constrain(error, -4500, 4500);
// convert to desired Rate:
rate = g.pi_stabilize_roll.get_pi(error, G_Dt);
// output control:
rate = constrain(rate, -4500, 4500);
return (int)rate;
#else
// limit the error we're feeding to the PID
error = constrain(error, -2500, 2500);
// conver to desired Rate:
rate = g.pi_stabilize_roll.get_p(error);
// experiment to pipe iterm directly into the output
int16_t iterm = g.pi_stabilize_roll.get_i(error, G_Dt);
// rate control
error = rate - (omega.x * DEGX100);
rate = g.pi_rate_roll.get_pi(error, G_Dt);
// output control:
rate = constrain(rate, -2500, 2500);
return (int)rate + iterm;
#endif
}
static int
get_stabilize_pitch(int32_t target_angle)
{
int32_t error;
int32_t rate;
// angle error
error = wrap_180(target_angle - dcm.pitch_sensor);
#if FRAME_CONFIG == HELI_FRAME
// limit the error we're feeding to the PID
error = constrain(error, -4500, 4500);
// convert to desired Rate:
rate = g.pi_stabilize_pitch.get_pi(error, G_Dt);
// output control:
rate = constrain(rate, -4500, 4500);
return (int)rate;
#else
// angle error
error = constrain(error, -2500, 2500);
// conver to desired Rate:
rate = g.pi_stabilize_pitch.get_p(error);
// experiment to pipe iterm directly into the output
int16_t iterm = g.pi_stabilize_pitch.get_i(error, G_Dt);
error = rate - (omega.y * DEGX100);
rate = g.pi_rate_pitch.get_pi(error, G_Dt);
// output control:
rate = constrain(rate, -2500, 2500);
return (int)rate + iterm;
#endif
}
#define YAW_ERROR_MAX 2000
static int
get_stabilize_yaw(int32_t target_angle)
{
int32_t error;
int32_t rate;
// angle error
error = wrap_180(target_angle - dcm.yaw_sensor);
// limit the error we're feeding to the PID
error = constrain(error, -YAW_ERROR_MAX, YAW_ERROR_MAX);
// convert to desired Rate:
rate = g.pi_stabilize_yaw.get_p(error);
// experiment to pipe iterm directly into the output
int16_t iterm = g.pi_stabilize_yaw.get_i(error, G_Dt);
#if FRAME_CONFIG == HELI_FRAME // cannot use rate control for helicopters
if( !g.heli_ext_gyro_enabled ) {
error = rate - (omega.z * DEGX100);
rate = g.pi_rate_yaw.get_pi(error, G_Dt);
}
// output control:
rate = constrain(rate, -4500, 4500);
#else
error = rate - (omega.z * DEGX100);
rate = g.pi_rate_yaw.get_pi(error, G_Dt);
// output control:
rate = constrain(rate, -2500, 2500);
#endif
return (int)rate + iterm;
}
#define ALT_ERROR_MAX 400
static int16_t
get_nav_throttle(int32_t z_error)
{
int16_t rate_error;
// XXX HACK, need a better way not to ramp this i term in large altitude changes.
float dt = (abs(z_error) < 400) ? .1 : 0.0;
// limit error to prevent I term run up
z_error = constrain(z_error, -ALT_ERROR_MAX, ALT_ERROR_MAX);
// convert to desired Rate:
rate_error = g.pi_alt_hold.get_p(z_error); //_p = .85
// experiment to pipe iterm directly into the output
int16_t iterm = g.pi_alt_hold.get_i(z_error, dt);
// calculate rate error
rate_error = rate_error - climb_rate;
// limit the rate
rate_error = constrain((int)g.pi_throttle.get_pi(rate_error, .1), -160, 180);
// output control:
return rate_error + iterm;
}
static int
get_rate_roll(int32_t target_rate)
{
int32_t error = (target_rate * 3.5) - (omega.x * DEGX100);
return g.pi_acro_roll.get_pi(error, G_Dt);
}
static int
get_rate_pitch(int32_t target_rate)
{
int32_t error = (target_rate * 3.5) - (omega.y * DEGX100);
return g.pi_acro_pitch.get_pi(error, G_Dt);
}
static int
get_rate_yaw(int32_t target_rate)
{
int32_t error = (target_rate * 4.5) - (omega.z * DEGX100);
target_rate = g.pi_rate_yaw.get_pi(error, G_Dt);
// output control:
return (int)constrain(target_rate, -2500, 2500);
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
static void reset_hold_I(void)
{
g.pi_loiter_lat.reset_I();
g.pi_loiter_lon.reset_I();
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
static void reset_nav(void)
{
nav_throttle = 0;
invalid_throttle = true;
g.pi_nav_lat.reset_I();
g.pi_nav_lon.reset_I();
g.pi_loiter_lat.reset_I();
g.pi_loiter_lon.reset_I();
circle_angle = 0;
crosstrack_error = 0;
nav_lat = 0;
nav_lon = 0;
nav_roll = 0;
nav_pitch = 0;
target_bearing = 0;
wp_distance = 0;
wp_totalDistance = 0;
long_error = 0;
lat_error = 0;
}
/*************************************************************
throttle control
****************************************************************/
static long
get_nav_yaw_offset(int yaw_input, int reset)
{
int32_t _yaw;
if(reset == 0){
// we are on the ground
return dcm.yaw_sensor;
}else{
// re-define nav_yaw if we have stick input
if(yaw_input != 0){
// set nav_yaw + or - the current location
_yaw = yaw_input + dcm.yaw_sensor;
// we need to wrap our value so we can be 0 to 360 (*100)
return wrap_360(_yaw);
}else{
// no stick input, lets not change nav_yaw
return nav_yaw;
}
}
}
static int get_angle_boost(int value)
{
float temp = cos_pitch_x * cos_roll_x;
temp = 1.0 - constrain(temp, .5, 1.0);
return (int)(temp * value);
}
// Accelerometer Z dampening by Aurelio R. Ramos
// ---------------------------------------------
#if ACCEL_ALT_HOLD == 1
// contains G and any other DC offset
static float estimatedAccelOffset = 0;
// state
static float synVelo = 0;
static float synPos = 0;
static float synPosFiltered = 0;
static float posError = 0;
static float prevSensedPos = 0;
// tuning for dead reckoning
static const float dt_50hz = 0.02;
static float synPosP = 10 * dt_50hz;
static float synPosI = 15 * dt_50hz;
static float synVeloP = 1.5 * dt_50hz;
static float maxVeloCorrection = 5 * dt_50hz;
static float maxSensedVelo = 1;
static float synPosFilter = 0.5;
#define NUM_G_SAMPLES 200
// Z damping term.
static float fullDampP = 0.100;
float get_world_Z_accel()
{
Vector3f accels_rot = dcm.get_dcm_matrix() * imu.get_accel();
return accels_rot.z;
}
static void init_z_damper()
{
estimatedAccelOffset = 0;
for (int i = 0; i < NUM_G_SAMPLES; i++){
estimatedAccelOffset += get_world_Z_accel();
}
estimatedAccelOffset /= (float)NUM_G_SAMPLES;
}
float dead_reckon_Z(float sensedPos, float sensedAccel)
{
// the following algorithm synthesizes position and velocity from
// a noisy altitude and accelerometer data.
// synthesize uncorrected velocity by integrating acceleration
synVelo += (sensedAccel - estimatedAccelOffset) * dt_50hz;
// synthesize uncorrected position by integrating uncorrected velocity
synPos += synVelo * dt_50hz;
// filter synPos, the better this filter matches the filtering and dead time
// of the sensed position, the less the position estimate will lag.
synPosFiltered = synPosFiltered * (1 - synPosFilter) + synPos * synPosFilter;
// calculate error against sensor position
posError = sensedPos - synPosFiltered;
// correct altitude
synPos += synPosP * posError;
// correct integrated velocity by posError
synVelo = synVelo + constrain(posError, -maxVeloCorrection, maxVeloCorrection) * synPosI;
// correct integrated velocity by the sensed position delta in a small proportion
// (i.e., the low frequency of the delta)
float sensedVelo = (sensedPos - prevSensedPos) / dt_50hz;
synVelo += constrain(sensedVelo - synVelo, -maxSensedVelo, maxSensedVelo) * synVeloP;
prevSensedPos = sensedPos;
return synVelo;
}
static int get_z_damping()
{
float sensedAccel = get_world_Z_accel();
float sensedPos = current_loc.alt / 100.0;
float synVelo = dead_reckon_Z(sensedPos, sensedAccel);
return constrain(fullDampP * synVelo * (-1), -300, 300);
}
#else
static int get_z_damping()
{
return 0;
}
#endif